Apache Spark Benchmark for Autoscaling: Qubole versus competition

Start Free Trial

This blog covers new benchmark tests to better understand Autoscaling behaviour of concurrent Apache Spark applications. We believe that this will help in advancing research in this space and help data teams evaluating alternative solutions.

Testing for Autoscaling

Autoscaling is the process and technology that automatically allocates the right amount of cloud computing resources or machines required to finish a workload in an acceptable amount of time.

Let’s take a workload that needs to be processed in Apache Spark. Autoscaling automatically increases or decreases Spark executors and cluster sizes needed in response to load and scalability characteristics of the workload.

For this blog we prepared a set of benchmark tests detailed below, which allow us to compare Qubole with other data platforms. Our findings suggest that Autoscaling with a popular alternative platform (lets call it ABC) is susceptible to configuration errors and is hard to tune; whereas Qubole Autoscaling works well, out of the box without the need for any configuration changes. In addition, we are only reporting Qubole numbers for the benchmark as ABC Spark clusters failed to finish the benchmark tests well past our generously allotted timeouts and had to be manually terminated.

Apache Spark cluster size changes with Autoscaling

The best way to understand Autoscaling is to see how the cluster size changes with time as new commands are added and old commands finish. Let’s start with some graphs before we get into the details. The blue line shows the current nodes in the cluster, the red line shows the active/concurrent commands. The green bars at the bottom are the command arrival times. The x-axis shows the time. The left Y-Axis shows the number of nodes and the right Y-axis shows the number of active commands.

All tests below used the same Apache Spark Autoscaling benchmark.

How Autoscaling can fail on Apache Spark

We ran some tests on ABC, the alternate platform using the default Autoscaling template. The template has three rules, two for upscaling and one for downscaling;

  1. Add N nodes if YARNMemoryAvailablePercentage is less than 15% for 1 five-minute period with cooldown of 5 minutes
  2. Add N nodes if ContainerPendingRatio is greater than 0.75 for 1 five-minute period with cooldown of 5 minutes
  3. Remove N nodes if YARNMemoryAvailablePercentage is greater than 75% for 1 five-minute period with cooldown of 5 minutes

In the first test, we set N to 1, which is the default value. We can clearly see that this results in very slow upscaling. Many queries failed because of shuffle broadcast timeout. We had to increase the shuffle broadcast timeout to 10 hours to make this work. Some queries were stuck and had to be terminated manually. Eight commands failed this test.

In the second test, we set N to 5. This cluster behaved much better and upscaled to 80 nodes in about 3 hours. The maximum number of active commands in the cluster was more than 25, whereas the maximum concurrent commands submitted were only 11. We had to terminate the cluster manually for ABC’s cluster. In this example we see the absence of downscaling when the load goes down. Eleven commands failed in this test.

Note that ABC supports multiple metrics and hence these two tests are not a fair representation of ABC Autoscaling. The possible spectrum of “Autoscaling policies” is so large with ABC that it is hard to understand when [manual] configuration ends and “real automation” starts.

How Autoscaling performs on Spark on Qubole

Autoscaling on Spark on Qubole is governed by two main parameters. These are stageTimeout and max executors. StageTimeout is used as SLA for all stages. Spark on Qubole upscales to meet this SLA. The calculation assumes tasks to be homogenous. We predict the expected completion time for stage based on current completion rate of tasks and upscale to meet the SLA. The second most important parameter is the max executors for a given application.

Note that unlike ABC, none of the commands failed in these tests on Qubole.

Autoscaling Timeline for Test1

Max Executors 1000, Stage Timeout 2 minutes

Autoscaling Timeline for Test2

Max Executors 1000, Stage Timeout 5 minutes

Autoscaling Timeline for Test3

Max Executors 100, Stage Timeout 2 minutes

It is clear from looking at these graphs that Qubole Autoscaling adjusts well with the fluctuating workload and keeps the cluster size appropriate for the running queries. This is unlike ABC Autoscaling which needs to be tinkered with to make it work.

Results Chart

As we can see from the chart, the minimum cost is $191 when we limit maximum executors to 100. Instead of using a static value, Qubole has an open source tool called SparkLens, which can be used to estimate appropriate max executor value depending upon cost or time sensitivity. Qubole is also building SparkLens-based Autoscaling, which can automatically infer and adjust maximum executor settings using data from previous runs of a given application.

Even when the maximum executor setting is over provisioned (1000 for this use case), Spark on Qubole manages to keep costs comparable to a fixed cluster size of 60 nodes with a default stageTimeout of 2 minutes. Increasing stageTimeout to 5 minutes results in lower costs, but it increases total execution time. If the workload is not very time-sensitive, it might be a good idea to increase stageTimeout.

Apache Spark Autoscaling vs Cluster Autoscaling

The difference between Qubole and ABC Autoscaling can be better understood by dividing it into two parts: Spark Autoscaling and Cluster Autoscaling.

The essence of Apache Spark dynamic allocation or Autoscaling is to share cluster resources among concurrent Spark applications.

Whereas the essence of cluster Autoscaling is to adjust cluster size based on demands from concurrent Apache Spark applications.

Qubole Cluster Autoscaling is transparent, as it combines resource requests from concurrent applications to automatically adjust cluster sizes. ABC Cluster Autoscaling—in contrast— treats Cluster Autoscaling as a separate concept altogether. This additional configuration step creates additional divergence, which needs to be realigned and recalibrated as the nature or the number of Spark applications running on a cluster change.

Apache Spark Autoscaling Benchmark

Most benchmarks for Apache Spark deal with single query/application performance. Typically Spark clusters run many concurrent Spark applications, especially on YARN. So we have created a new benchmark for comparing Autoscaling on Apache Spark clusters that consists of 86 queries. These queries were picked up from the TPC-xBB benchmark. This benchmark typically runs for about 225 minutes.

This benchmark simulates a workload which submits multiple queries to cluster every 15 minutes. The table below describes all the TPC-xBB queries submitted and the submission timings. All the queries in a given row are part of the same group. Within a group, queries are submitted with 30 seconds delay. We can see in the table that for a group starting at 45 minutes, the last query of the group is submitted after a 5-minute delay. The maximum concurrent queries submitted within any group is 11 and minimum is 2. The workload starts heavy—i.e the bulk of the queries are submitted in the first half of the benchmark, with the second half relatively lean. This is useful for comparing both upscaling and downscaling aspects of cluster Autoscaling.

We look at the sum of total wallclock time for each query, number of queries succeeded and total cost of cluster to compare the effectiveness of Autoscaling policies.

Configuration Details

All tests were run on a cluster with r4.4xlarge instances. The Spark version used was 2.4.0. Spark driver memory was set to 10GB, explicitly. Spark.sql.autoBroadcastJoinThreshold was increased to 50MB and Spark.sql.shuffle.partitions was increased to 320 from default 200. Additionally, Spark.sql.broadcastTimeout was increased to 10 hours for queries running on ABC as they were failing because of lack of executors. The TPC-xBB data was generated at scale 3000.

Conclusion of the Apache Spark Concurrency Benchmark

Our findings suggest that ABC Autoscaling is susceptible to configuration errors and hard to tune, whereas Qubole Autoscaling works well out of the box without any configuration changes required. Given the large range of configurations with respect to Autoscaling for ABC, it is difficult to discern if our tests used the best configuration for ABC Autoscaling. But it is very indicative of a real world scenario where even expert professionals will face challenges configuring such a platform, as it requires significant manual administrative effort to fine tune it whenever data distribution is changed, new applications added, or old applications removed from the cluster.

For more information on Apache Spark performance on Qubole, please contact your Sales Architect to send us an email.

Start Free Trial
  • Blog Subscription

    Get the latest updates on all things big data.
  • Recent Posts

  • Categories

  • Events

    Google Cloud Next On Air

    Jul. 14, 2020 | Virtual Event

    Data Lake and Data Warehouse: Collision or Synergies? – IMEI

    Jul. 15, 2020 | Virtual Event

    Winning Open Data Lake Architectures

    Jul. 21, 2020 | Virtual Event

    Building A Modern Data Lake on Google Cloud

    Jul. 23, 2020 | Virtual Event

    AWS re:Invent

    Nov. 30, 2020 | Las Vegas, NV