
Workload-Aware
Auto-Scaling
A new paradigm for
Big Data Workloads

White Paper

Executive Summary
Auto-Scaling has become a common concept with
the advent of the Public Cloud. It was one of the
first techniques that allowed applications to exploit
the elasticity of the Cloud. However - as the Cloud
gained popularity and more complex applications
moved to the Cloud – first generation Auto-Scaling
technologies fell behind in serving the requirements
of such applications.

In this document we describe Workload-Aware
Auto-Scaling. This is an alternative architectural
approach to Auto-Scaling that is better suited for
new classes of applications like Hadoop, Spark
and Presto that have now become commonplace
in the Cloud. We show that traditional auto-scaling
technologies are ill-suited for Big Data applications
and that Workload-Aware Auto-Scaling technologies
such as that offered by Qubole are vastly superior.
These technologies result in significant benefits to
Reliability, Cost and Responsiveness for Big Data
Applications.

http://aws.amazon.com/autoscaling

White Paper

Auto-Scaling – a Short History
AWS introduced Auto-Scaling Groups in 20091. In its introduction, the blog notes:

Auto-Scaling lets you define scaling policies driven by metrics collected by Amazon CloudWatch. Your Amazon
EC2 instances will scale automatically based on actual system load and performance but you won’t be spending
money to keep idle instances running.

Auto-Scaling defined in this manner was largely targeted for stateless applications – like web servers – where the
state was stored on external databases & caches. Real-time metrics like CPU and Memory utilization were used by
applications to dynamically add or remove nodes – as shown in the Figure below:

Simple strategies like this work fairly well for web applications. Some salient characteristics of web applications are
relevant to the way these auto-scaling systems were designed:

• They are Stateless

• Every application request (say a HTTP request) is usually very short lived

• Application workloads are driven by external clients and not known in advance

• Usually applications want to minimize response latency (as opposed to optimizing cost)

• All nodes are usually symmetrical from the point of view of CPU/memory usage

• An application (hosted on a single auto-scaling group) is homogeneous

• Application workload changes are often smooth (say increasing gradually during working hours and declining
thereafter)

2

Figure 1: Auto-Scaling using CPU Utilization in AWS

White Paper

A. AWS EMR2

Hortonworks HDP-AWS3

Figure 2: Auto-Scaling using memory utilization in AWS EMR

Figure 3: Configuring Auto-Scaling in HortonWorks Data Cloud

3

Rule name

Add

If

Is

for

Cooldown period

MyScalingRule

1

YARNMemoryAvailablePercentage

Less than or equal to 15 percent

1

1

�ve-minute periods

�ve-minute periods

Instances

Rule name

Scaling
adjustment

Evaluation
period

Cooldown
Comparison

operator

Threshold

CloudWatch
metric

Enter Big-Data
As AWS was introducing Auto-Scaling groups in 2009 – Big Data was just coming into being – with Hadoop and later
Spark and Presto becoming commonly used to wrangle with large data sets. The Public Cloud was a match made in
heaven for Big Data. Large data sets were much more easily stored in Cloud Storage Systems like S3 – and large scale
and bursty computation requirements of Big Data applications were ideally suited for the large and elastic pools of
compute resources available in these Clouds.

The auto-scaling policies described above are easy to comprehend and it is not surprising that the same architecture got
co-opted for running Big Data workloads. We see a similar approach in commercial Cloud Hadoop offerings (AWS EMR
and Hortonworks) for scaling a Hadoop Cluster in 2017 as we saw for scaling web applications in 2009.

White Paper

Hadoop is not a Web Server!
Big Data workloads are a complete contrast to standard Applications. A single cluster (the rough equivalent of an
auto-scaling group) is submitted multiple simultaneous discrete applications. Each of these applications can comprise
up to hundreds of thousands of tasks. Some of the differing characteristics of these applications are as follows:

4

Stateful Servers: Most big data applications store state on each node while they are running.
Removing nodes without accounting for this state can cause workloads and even the entire
cluster to fail. The various kinds of state that can be stored in each node include:

• Data belonging to HDFS

• Data belonging to a distributed cache (like RDDs in Spark)

• Intermediate data produced by tasks that are needed by subsequent tasks in the
application (for example: Map Outputs in Map-Reduce parlance)

Non-Uniform
Server Load:

Nodes in a big data cluster often have widely varying load factors.
Some nodes have more memory intensive tasks and some have more CPU intensive ones.
Running tasks can be of widely varying time durations. The amount of data stored on each
node can also vary widely depending on what applications it has been part of.

Long Running
Requests:

Individual tasks comprising a Big Data Application can run for hours.
Some tasks (like Reducers) run for long time gathering data from previous stages – or they can
be long running simply because they are processing too much data (say due to Skews).

Workload
Awareness:

Profile of Big Data applications running in a cluster are known up-front.
Unlike web applications where the requests are generated from external clients – in a Big
Data cluster – task units are generated by an application that is submitted to a coordinator
daemon4 in the cluster. As such the characteristics of the application - the number of tasks it
will generate (or even control over the same), the data it will read and the computation it will
perform on it – are all known to the coordinator.

In many cases – applications are repeated. For example the same reporting query may run
frequently, or the same ETL job may run periodically in the night. This further helps a smart
coordinator anticipate in advance the nature of the workload submitted to it.

Utilization
Sensitive:

Workload
Burstiness:

Big-Data workloads are usually very cost sensitive.
A big subset is the ETL applications that care more about Reliability and Cost (which translates
into a desire for high cluster utilization). Another big subset is ad-hoc query and analysis that
are latency sensitive (but are also somewhat cost sensitive).

A Big Data cluster can go from idle to running 100k tasks in an instant.
This is contrast to usual web traffic where traffic usually goes up relatively smoothly even in the
worst of days.

White Paper

5

White Paper

All these completely upturn the assumptions that underlie old world auto-scaling technologies and make it a very poor
fit. Consider these immediate observations:

• Removing nodes while downscaling is hard: both because of long running tasks as well as accumulated state.

• Downscaling algorithms need to pick nodes carefully: Nodes are no longer uniformly loaded – neither do
they have equal amounts of application state.

• Same auto-scaling policies cannot be applied to all workloads: Some workloads want low latency, some high
utilization. Some may have SLA constraints and some may have budget caps.

• Usage of pre-emptible nodes(like AWS EC2 Spot Instances) is hard: primarily because nodes are stateful.
Pre-empted nodes can even lead to cluster failure. At the same time – usage of pre-emptible resources becomes
extremely important to reduce costs – particularly for ETL workloads.

• Cluster scaling has to take application characteristics into account: as the most trivial example - one cannot
repeatedly upscale by a small step function to satisfy a 100k task application. That may take a very long time.

6

These differences can be summarized thus:

Auto-Scaling Type

Application Characteristic

Stateful Servers

Uniform Load on Servers

Long Running Requests

Latency Sensitive High Variable

Utilization Sensitive Low High

Workload Burstiness Moderate Extremely High

Workload Awareness

Standard Application Big Data Application

Table 1: Standard versus Big-Data Application

When we started building auto-scaling technologies at Qubole, we evaluated and rejected4 existing approaches to auto-
scaling as being insufficient for building a truly Cloud-Native Big Data solution. Instead we built Auto-Scaling into Hadoop
and Spark where it has access to the details of the Big Data applications and the detailed state of the cluster nodes.

Being Workload Aware has made a dramatic difference to our ability to orchestrate Hadoop and Spark in the Cloud. The
different ways in which we have used this awareness include:

White Paper

Workload Aware Auto-Scaling

7

Upscaling: Qubole managed clusters look at a variety of criteria - beyond resource utilization - to come up
with upscaling decisions. Some examples:

• Parallelism-Aware: If applications have limited parallelism (say a Job can only use 10
cores) - then upscaling will not scale the cluster beyond that number (even though the
cluster may exhibit high resource utilization)

• SLA-Aware: Qubole monitors jobs for estimated completion time and adds compute
resources if they can help meet SLA. If a Job can be predicted to complete in its required
SLA then no upscaling is triggered on its behalf (even though resource utilization may
be high). A large job with thousands of tasks will trigger a much stronger upscaling
response than a small job.

• Workload Aware Scaling Limits5: If an application is limited in the number of CPU
resources it can use (say because of limits put in by the administrator) - then it will not
trigger upscaling if it is already using the maximum resources allowed.

• Recommissioning: Any upscaling requirements are first attempted to be fulfilled using
any nodes that are currently in the process of Graceful Downscaling.

Furthermore a composite cluster upscaling decision is taken depending on the requirements
of each of the jobs running in the cluster.

White Paper

8

Downscaling: • Smart Victim Selection: Tasks running on each node and the amount of state on each
node are considered in addition to the node launch time to determine which nodes are
safe and optimal to remove from the cluster when down-scaling.

• Graceful Downscaling: All state from a node is copied elsewhere before removing it from
the cluster. This includes HDFS decommissioning and log archival – and in cases of forced
downscaling – also involves offloading intermediate data to Cloud Storage.

• Container Packing6 : Scheduling algorithms inside YARN are modified to pack tasks into a
smaller set of nodes that allows more nodes to be available for downscaling.

Composite Health
Checks:

Spot Loss
Notification:

Spot
Rebalancing7:

We periodically check running nodes in a cluster against their membership and health status in
HDFS (distributed storage system) and YARN (distributed computing system). Nodes that don’t
pass such composite health checks are automatically removed from the cluster.

YARN based Hadoop and Spark clusters in Qubole are able to deal with Spot Loss
Notifications provided by AWS. The cluster management software immediately shuts off Task
scheduling on such nodes, stops further HDFS writes to such nodes, backs-up container logs
on these nodes and tries its best to replicate any state left on such nodes to other surviving
nodes in the system

We are not only able to downscale nodes that are free - but able to evaluate which nodes
have the most accumulated state/tasks and may be the easiest to retire. In most cases we
can even estimate the amount of time required to retire a node. This sophistication allows
us to build features like Spot Rebalancing where a cluster with excess on-demand nodes can
retire them when it finds that Spot Nodes have become available in the Spot market.

White Paper

Cloud-Aware Workload Management

9

Just like Auto-Scaling technologies benefit enormously by being Workload-Aware – the dual is also true. Workload
management technologies inside Big Data engines– like Hadoop, Spark and Presto – benefit enormously from being
Cloud aware. A few examples are in order:

Spot Awareness8:

Task Estimation:

Heterogeneous
clusters9:

HDFS and Job Schedulers in Qubole’s Hadoop/Spark/Presto clusters are aware of which nodes
are preemptible Spot nodes (and hence unreliable) and which nodes are regular ones. This
knowledge allows us careful placement of data and tasks to allow applications to run reliably in
the presence of Spot losses:

• HDFS Data Blocks are, by default, replicated to Spot and On-Demand nodes

• Important Tasks - like Application Master and Qubole Control Jobs (Shell Commands)
are not placed on Spot Nodes (and this limitation is factored into Auto-Scaling logic)

A key step in all Big Data technologies is dividing processing into small chunks that can be
performed in parallel. The maximum computing resources available to an application can be
used to dynamically compute such parallelism (this is now dynamic and configurable where it
was previously static).

In heterogeneous clusters –any one of different types of nodes can be chosen for Upscaling.
The knowledge of workload requirements at any instant can allow the cluster management
software to choose the right instance for cluster upscaling or downscaling. Moreover the
knowledge of different heterogeneous instance types can be used to automatically come up
with optimal configurations for a specific job.

White Paper

The table below summarizes the above technological differences between traditional and workload-aware auto-scaling
technologies:

Auto-Scaling Type

Features

Load Monitoring

Simple Health Check

Parallelism Aware

SLA Aware
Upscaling

Downscaling

Spot Nodes

Recommissioning

Workload Specific Scaling Limits

Smart Victim Selection

Graceful Downscaling

Container Packing

Composite Health Checks

(Spot) Node Rebalancing

(Spot) Node Loss Notification Handling

Spot Aware Scheduling

Heterogeneous Clusters

Feature Group
Traditional Workload-Aware

Table 2: Traditional versus Workload-Aware Auto-Scaling

10

White Paper

Conclusion
We have shown comprehensively how the nature of Big Data applications differs substantially from simple online
applications like Web Servers. To truly take advantage of the Cloud – one has to integrate auto-scaling deep into the Big
Data stack so that it is Workload-Aware. A true Cloud Native implementation also makes the Big Data stack aware of the
Cloud resources and helps it adapt workload and data management in response to it.

The described technologies are already, or soon planned to be, part of the Qubole Big Data Platform offering.

11

Appendix – Qubole TCO Savings in Practice
The Workload Aware Auto-Scaling White Paper has described why generic approaches to auto-scaling are inefficient and
costly for big data use cases in the cloud. Qubole has pioneered workload aware auto-scaling for big data over the last
several years and delivered the technology into a generally available production service in 2017. By working with over
200 big data customers of all sizes and in multiple industries, we have also been able to construct models that quantify
the financial impact of utilizing workload-aware auto-scaling in real life environments. This appendix rounds out the
technology paper with the financial insights.

First, the cost of ownership savings of using Qubole as a data platform in the cloud are 80% overall as measured
in typical customer environments whether the comparison is to cloud or on-premise big data! Qubole
customers have save $140M in costs since 2016 (without counting our largest customer who could distort the
savings upwards). The costs savings measured primarily derive from 3 automation efficiencies Qubole brings to bear
with automation agent technology. 100% of the savings are not due to workload aware auto-scaling (55% are), but
100% of the savings documented here across more than 200 customers are available to any business using the Qubole
service. The 3 primary drivers of cost savings are:

1. Cluster Life Cycle Management (CLCM) – Amount saved by automatically terminating a cluster when it is inactive
vs. allowing it to continue to run at a minimum capacity in the absence of CLCM.

2. Workload-Aware Auto-scaling – Amount saved by predictively adjusting the number of nodes to meet demand
vs. allowing clusters to run at full capacity for the duration of the instance in the absence of the agent.

3. Spot Shopper savings – Amount saved by using SPOT instances at an assumed 80% discount over on-demand
instance pricing thanks to the Qubole agent.

Savings by Qubole Automation Features ($140M in compute costs)

White Paper

About Qubole
Qubole is passionate about making data-driven insights easily accessible to anyone. Qubole customers currently process nearly an exabyte of data every month,
making us the leading cloud-agnostic big-data-as-a-service provider. Customers have chosen Qubole because we created the industry’s first autonomous data
platform. This cloud-based data platform self-manages, self-optimizes and learns to improve automatically and as a result delivers unbeatable agility, flexibility, and
TCO. Qubole customers focus on their data, not their data platform. Qubole investors include CRV, Lightspeed Venture Partners, Norwest Venture Partners and
IVP. For more information visit www.qubole.com

For more information:

Contact: Try QDS for Free:
sales@qubole.com https://www.qubole.com/products/pricing/

469 El Camino Real, Suite 205
Santa Clara, CA 95050

(855) 423-6674 | info@qubole.com

WWW.QUBOLE.COM

End notes

Page 2 - 1 New Features for Amazon EC2: Elastic Load Balancing, Auto Scaling, and Amazon CloudWatch - Jeff Barr, AWS Blog, May 18, 2009

Page 3 - 2 Using Automatic Scaling in Amazon EMR - AWS EMR documentation

Page 3 3 EC2 Spot Notes - AWS EMR documentation

Page 7 4Auto-Scaling Hortonworks Data Cloud - HDP AWS documentation

Page 7 5 Industry’s First Auto-Scaling Hadoop Cluster - Joydeep Sen Sarma Qubole Blog, Jun 17, 2012

Page 8 6 HDFS Decommissioning - Apache Hadoop 2.7.2 Documentation

Page 8 7 Rebalancing Hadoop Clusters for Higher Spot Utilization - Hariharan Iyer, Qubole Blog, Jun 9, 2015

Page 9 8 Riding the Spotted Elephant - Mayank Ahuja, Qubole Blog, No 12, 2015

Page 9 9 Qubole announces Heterogeneous Clusters on AWS - Hariharan Iyer, Qubole Blog, Nov 30, 2016

Spot Shopper,
$25.12 (18%)

Cluster
Lifecycle

Management,
$35.83 (26%)

Workload Aware
Autoscaling,
$77.73 (56%)

https://www.qubole.com/products/pricing/
https://aws.amazon.com/blogs/aws/new-aws-load-balancing-automatic-scaling-and-cloud-monitoring-services/
http://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-automatic-scaling.html
https://aws.amazon.com/ec2/spot/
https://hortonworks.github.io/hdp-aws/auto-scaling/index.html
https://www.qubole.com/blog/industrys-first-auto-scaling-hadoop-clusters/
https://hadoop.apache.org/docs/r2.7.2/hadoop-project-dist/hadoop-hdfs/Federation.html#Decommissioning
https://www.qubole.com/blog/rebalancing-hadoop-higher-spot-utilization/
https://www.qubole.com/blog/riding-the-spotted-elephant/
https://www.qubole.com/blog/qubole-announces-heterogeneous-clusters-on-aws-reduce-costs-up-to-90-with-spot-fleet/

