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Foreword

Today’s exponential growth in data velocity, volume, and variety is
forcing enterprises to look for a platform that addresses their imme‐
diate needs and scales to meet their requirements. Modern organiza‐
tions have data of multiple types and variable velocity, consumed by
multiple personas on a continuous basis. The organizations are also
accountable, legally and ethically, to their customers for how they
collect and store personal information.

What’s more, modern interactive analytics and machine learning
demand continuous data processing as users experiment and iterate
with different data types to arrive at the insights these tools can pro‐
vide their businesses.

Successful companies also implement financial governance controls
that lead to cost savings when taking advantage of public clouds.
This reduces guesswork and avoids difficult cost-controlling
exercises.

Enterprises want to do more with their data lakes: they see the bene‐
fits of leveraging inexpensive storage, the flexibility to support a
great diversity of data, and advanced analytics that offer meaningful
insights.

At Qubole, we’ve created an Open Data Lake Platform that addresses
all of this complexity as well as potential future requirements. It sup‐
ports open industry-standard ACID transactionality as a built-in
feature to deliver on data privacy and right-to-be-forgotten require‐
ments. We’ve also made sure to support continuous data engineering
and streaming analytics in addition to data exploration, ad hoc ana‐
lytics, and machine learning.
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In the process of designing this solution, we’ve learned a lot—and
you’ll find those insights in the pages that follow. If you’re pursuing
a career in data engineering or looking for ways to adapt your enter‐
prise to the world of big data, this report is our way of sharing the
knowledge you need to find your way forward. We hope you find
the world of big data engineering as intriguing as we do.

— The Qubole Marketing Team
March 2020
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The Evolving Role of the
Data Engineer

Every organization can benefit from data, used adeptly in coordina‐
tion with the organization’s goals. Today’s process of accumulating
enormous amounts of information from different sources—big data
in common parlance—is like a powerful telescope that lets you see
further into the universe and learn about trends you couldn’t track
before.

The term data engineer is relatively new, and the role appears only
sporadically in technical literature. It is the data scientists who are
exalted as today’s heroes: the high-flying fighter pilots of big data
who create machine learning models for predictions and other ana‐
lytics. But no airplane could fly without a small army of mechanics
and other trained staff to prepare the planes. In this analogy, the
data engineer is like the airplane mechanic, preparing the data that
enables the data scientist to carry out organizational goals. When
you add up all the tasks that fit under this role—getting the data,
cleaning it, creating enhanced versions—observers often claim that
data engineering comprises 80 to 90% of the work organizations do
with data.

Why did data engineering become so important? During the 1990s,
the world underwent a momentous transformation that reached
more and more deeply into our lives and brought cascading impacts
upon just about every career. The transformation was driven by a
hodgepodge of trends:
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• New roles for data throughout society, such as the growth of the
web and social media

• New sources of commercial data
• The vast speed-up in telecommunications and the internet
• New data sources such as sensors, cameras, and internet-

enabled household devices
• Inexpensive storage
• Amazing new tools and algorithms for analytics, particularly

machine learning

As these changes took hold, the profession of data engineering
emerged to gather, store, and distribute the data. The requirements
and procedures in these professions are very different from the data‐
base administrator (DBA) job that attracted so many people starting
in the 1980s. These major changes have taken place during the life‐
times of even fairly young employees.

Increases in the amount and speed of data being generated through‐
out the world were already straining the computer industry by the
1990s, when common number prefixes such as giga- and peta- no
longer sufficed, and new prefixes such as zetta- and yotta- had to be
invented. Although big data users tend to be close-lipped about the
size of their installations, Uber, for example, boasted in 2018 of
maintaining more than 100 petabytes of data to support more than
100,000 queries per day.

The rapidly falling cost of storage has several far-reaching effects on
the ways organizations handle data. Instead of reducing data imme‐
diately to aggregate fields and throwing away the raw data, organiza‐
tions tend to store everything they get. They are also willing to
duplicate fields in different formats for different users.

Data engineering, as the name suggests, is a lot like software engi‐
neering. Data engineers learn to deal with such software engineering
concepts as rapid and continuous development, automation and
orchestration, modularity, and traceability. Operational concerns
such as fault tolerance and service level agreements (SLAs) are han‐
dled differently in the age of data engineering. The appeal of clouds,
both third-party (public) and on-premises (private), also alters the
old equations while introducing new tools and processes.
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A brief overview of jobs in data handling, and their evolution, might
help set the context for the goals of this report. From the earliest
work with data, housekeeping tasks were assigned to the DBA, who
defined schemas, ran Data Definition Language (DDL) SQL com‐
mands, took care of backups, supported the data dictionary, and so
on. Sitting between the DBA and the users, such as data scientists,
data was prepared for use largely by a new position called the ETL
(extract, transform, load) developer. But more modern tools stress
application programming interfaces (APIs) and the preparation of
data streams to supplement or replace the old DBA tools, leading to
today’s understanding of the data engineer. The traditional job of
ETL developer is closest to modern data engineering.

For people who have learned DBA tools and practices, the transition
to data engineering will be difficult. Software engineers also face tall
hurdles in becoming data engineers. The responsibilities and tools
are substantially different from those found in applications or sys‐
tems programming.

This report traces the ripple effects of technical, social, and business
evolution on data storage, data-processing tools, and data-handling
procedures. It explains why data engineering has taken its current
form and what skills you need to be a data engineer. This report is
aimed at DBAs, software engineers and developers, students prepar‐
ing for data-engineering careers, managers responsible for data, and
others who need to understand how data can work in modern
organizations. It covers the following:

• Major tasks of the data engineer
• Business intelligence and big data
• Different levels of structure in data and how to streamline data

access
• Capabilities of third-party cloud options
• Tools for ingestion, transfer, and enrichment
• Managing and planning the infrastructure to run pipelines
• Software engineering development
• Automation and orchestration of data engineering
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Data Engineering Today
Key issues that data engineers handle include performance, scalabil‐
ity, fault tolerance, change management, and exception handling.
I look at these issues in this report and mention some of the popular
tools available to solve them, along with the theoretical and practical
knowledge you need. The next few sections show how the concepts
and thought processes data engineers use resemble older ways of
thinking about data, and discuss what assumptions need to change:

Data ingestion and transfer
In traditional environments with data warehouses and relational
databases, this task is divided among a number of tools for dif‐
ferent stages of data use. For instance, an SQL database might
ingest data from an outside source, such as a spreadsheet, data‐
base, or flat file. To ingest data from an operational database to a
data warehouse or a data store used by business intelligence (BI)
tools, the developer applies a tool for Extract, Load and Trans‐
form (ELT) or the aforementioned ETL. Sometimes, replication
or streaming tools are used to keep the target system up to date
in near real time. Data virtualization tools can make data avail‐
able on demand without having to move it and keep it up to
date. Backups also use specific tools.

Big data environments divide tasks differently. SQL is used
mostly for exploring the fields and characteristics of data sets
(such as ranges) before production use, when it is supplanted or
complemented by APIs. Backups probably require specialized
tools—and are performed in cloud solutions through configura‐
tion options—but replication is built into most data stores and
is configured as part of their setup. The new environments still
use bulk data transfers and ETL tools, which have evolved with
the times.

Transformations and enrichment
The data engineer often must add or change fields prior to stor‐
age. Reasons include:

• Correcting errors.
• Joining databases on fields they have in common, perhaps

with changes to column names for consistency and clarity.
• Adding provenance metadata, such as the source of the data

and a timestamp recording when the data was received.
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• Converting different units of measurement to a common
unit, such as English and metric standards, or different
ways to represent values, such as “DE” and “Delaware.”

• Precalculating new fields that users will need, such as the
average for a column or a total price based on several differ‐
ent components of a price.

• Determining the column that holds data based on hints
within the data, such as searching for a company name in a
news article or social media post and storing the correct
company name as a “company” field.

• Summarizing multiple rows to reduce storage, such as stor‐
ing a few aggregate statistics on the data for an entire day at
the end of that day. This is called rolling up a table.

The time and computing resources required for transformations
and enrichment determine whether you perform them as you
ingest the data or later, after the raw data is stored. Most sites
maintain data in different stages: some closer to the raw state in
which it arrived, others successively more refined. As the data
becomes more refined, it comes closer and closer to meeting the
needs of the organization’s users. For instance, some users might
receive only averages, without seeing the individual rows of data
on which those averages are based. This reduction can be done
for privacy reasons or just to reduce the cost of transferring and
processing the data.

Cataloging
As data stores multiply, users have more trouble finding out
what data supports their work and where it resides. To serve the
users, data engineers must do more than ingest and store the
data in an accessible format—they must catalog it so that users
can search for it on relevant metadata. Such metadata could
include column names, sources, date of creation or ingestion,
keywords or other tags, and who owns the data within the orga‐
nization. Catalogs are data stores themselves; the user queries
the catalog, and then either queries the data store it points to or
asks the data owner for access to that data store.

Storage
Data warehouses and relational databases are still important,
but they have been joined by new types of data stores, including
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temporary storage areas used for analytics. A diverse but
well-organized (and well-cataloged) modern collection of data
stores is called a data lake.

Like DBAs, data engineers are responsible for capacity plan‐
ning. Cloud storage alters the calculations considerably because
you can scale quickly and easily. But costs must always be kept
in mind, because storage and network transmission are not
cost-free. Furthermore, the tools used to ingest and process data
in the cloud tend to be different from those you use on-
premises.

In modern environments, data tends to grow quickly for many
reasons: the sheer volume of available data, the constant emer‐
gence of new sources and types of data, the presence of data in
many versions for experimentation, and the organization’s
desire to keep old data around because it might be useful for
analytics and historical tracking. Thus, it’s important to choose
storage options and tools that can handle data growth in the
range of one or two orders of magnitude.

Some organizations have entirely migrated away from one-size-
fits-all relational databases. Others keep these databases for
transactional applications while adding parallel data stores that
contain data in formats more appropriate for capturing stream‐
ing data and analyzing big data. You will probably find yourself
setting up several different types of data stores and copying data
between them.

Partitioning, which is already common in the relational world,
is even more crucial with big data because data sets are simply
too large to store or process on a single host. This report looks
at some of the considerations for partitioning. Recent data
stores build in replication and partitioning, making fault toler‐
ance easier.

Configuration tends to be simpler with the new data stores than
it is for relational databases, but you trade flexibility for this
simplicity. In other words, each of the new storage types is
designed for particular uses of data. Your effort goes into deter‐
mining the proper type of storage for each use, instead of tuning
a single database to support that use. Retention requirements
may also determine the choice of storage (see “Object and
Tiered Storage” on page 33).

6 | The Evolving Role of the Data Engineer



Automation and orchestration
Fast computers, comprehensive networking, and copious tools
for automation have made it easier over the past couple of deca‐
des to let the system do boring and repetitive tasks. At the same
time, every organization wants to do more work with fewer
people, and you need to enhance your value to the organization
by learning to automate. Besides, who doesn’t want to be
relieved of boring tasks? (Many programmers say that they
would rather automate a task than perform it repeatedly, even if
the total time required is the same.) When tested thoroughly,
automated tasks are more reliable because they don’t type com‐
mands incorrectly or forget steps.

Automation is a part of orchestration, or setting up processes
that take your system through all the steps needed to perform
routine tasks.

Security and access
In large environments, access to data may be the responsibility
of other administrators, but some of the responsibility often
resides with data engineers. Many of the tools in this report
connect to authentication servers and offer Secure Sockets Layer
(SSL)/Transport Layer Security (TLS) for data encryption in
transit.

Access control lists (ACLs) can help to group users and control
which groups have access to different types of data. Fields that
are sensitive—because they contain corporate secrets or person‐
ally identifiable information (PII)—must be segregated from
other data. You might need to learn new procedures for the new
storage systems used for big data, and the data stores are inte‐
grated in various ways with the cloud’s identity and access man‐
agement (IAM) tools. (See “Limitations on Data Use” on page
12 for more about security and legal compliance requirements.)

Some changes brought by modern data environments are quan‐
titative. In the age of the “knowledge worker,” more users want
access to their own data and the opportunity to create their own
analytical tools. So the volume of requests for data can be
greater than in old environments, and automating access will
benefit you. Furthermore, the variety of data sources and stores
makes protection more complex, and the volume of data stored
makes breaches more serious.
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You also need to structure data so that your users don’t see sen‐
sitive data to which they are not entitled. Some modern data
stores provide views, as relational databases do, so that you can
present to each user just the rows and columns to which they
have access rights. Because data duplication is common in
modern data environments, you can create custom data sets for
users.

Development life cycle
All the trends discussed so far call for a clear set of steps in the
evolution of your processes for handling data. The volume and
variety of big data require repeatable, reliable processes. Secu‐
rity will be woefully lax if you deploy buggy software and pro‐
cesses, so strong software engineering practices and good
orchestration tools can prevent problems. And opportunities
for automation allow you to meet all these needs as well as force
you to define the procedures carefully.

Few organizations assign all these tasks to a single person. Data
engineering is normally a team effort, with senior members of the
team setting policies and other members handling designated tasks.

The field of data engineering has started to get attention in the pub‐
lishing world. One blog post lists books for data engineers to read,
although not all of these books focus on data engineering. Some talk
about data warehousing, which is different, or about tools shared by
data science and data engineering.

Evaluation Process
The data revolution is driving, and is driven by, a new empower‐
ment among employees at many organizational levels. This is called
the democratization of data because organizations extend access to
data to people below the management layers that used to have exclu‐
sive access. The field of BI is being transformed, like so many other
organizational practices.

As a data engineer, you need to work closely with the potential users
of your data to give them the data sets they need, in the structure
they need. Questions to ask include:

What data sets do users need?
This helps you prioritize which to process and ensure that they
can be found in catalogs.

8 | The Evolving Role of the Data Engineer
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What fields do users query, and what data do they want in return?
Answers to these questions help you structure data for fast
retrieval.

How fast do they need data and at what granularity? Do they want
real-time access to particular transactions, or are they satisfied by
weekly summaries?

These questions help you choose the processing tools and stor‐
age for different types of data, determine how many pipelines to
use for the performance you need, and create useful aggregate
data.

What data is sensitive and needs to be protected from unauthorized
employees?

The answers can affect the structure of both data and access
groups.

Ask users to try to think two or three years ahead so that you can
design systems to scale and be adaptable. But because anticipating
needs in modern business environments is difficult, the processes
described in this report allow you to create new forms of access to
data quickly.

Organizations that fail to collect these requirements early in the data
engineering effort—or that fail to repeat the collection regularly—
end up with extremely sad outcomes. Data goes unused and
employees express constant frustration at the delayed or missing
data they want. Angry managers might stop analytical projects and
write off their investments in the related tools and employees as a
loss, even though the problem was never with the tools or the goals
—it was the failure to meet the users’ real, specific requirements.

Many departments hear about enticing new software (Hadoop!
Spark!) and invest in it to appear up to date, without doing enough
research about what benefits the tools actually provide. If these tools
end up being inappropriate for the organization’s data types and
uses, the tools will simply waste resources (including the learning
time spent by employees) and lead managers to question the goals of
data-driven transformation.
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Best Practice

Never put tools or data in place without a detailed plan
for how you will use them.

Data engineers may know better than other employees whether a
particular data set is fit for certain purposes. Data possesses a huge
variety of aspects, each of which can influence its value for some
particular type of analysis. For instance, a data set may look impres‐
sive because it covers 200,000 people, but if that data contains very
few representatives of some population (say, Native Americans), it
might not produce accurate results—at least when applied to Native
Americans. Concerns with aspects of data are common in many
fields. Statisticians, for example, learn early in their studies that they
need to choose the right test for their data; for instance, the popular
T-Test is inappropriate for nonlinear data. Machine learning intro‐
duces all sorts of other considerations. Thus, data engineers as well
as data scientists often run exploratory queries on new data sets to
learn the characteristics that will matter during analytics.

As the person who may best understand the available data, the data
engineer must speak up and help users choose the right data and the
right kind of analytics. You might point out that the window during
which streaming data is captured must be large enough to provide
enough information to produce a meaningful summary—or that a
window must be made smaller so that important anomalies don’t get
lost when aggregating them into a large data set.

If a business user asks you to use streaming processors on log data
that is stored for archival purposes, you might point out that a sim‐
ple write to a file would suffice. As another example, data used for
legal compliance must be checked for adequate accuracy. And there
are plenty of applications where traditional SQL queries to a rela‐
tional database are more appropriate than the fancy modern tools
that get a lot of press.

Data prep also depends on the shape of the data and how it will be
used. For instance, you will probably handle sensitive data that
needs to be anonymized in order to prevent misuses, such as reiden‐
tifying individuals whose identities must remain hidden. You often
have to find a balance between opposing risks: reidentifying individ‐
uals versus making data so general that it loses its value. Statistical
analysis might tell you, for instance, that in certain high-population

10 | The Evolving Role of the Data Engineer



areas you can record the city in which a person lives, whereas in
lower-population areas you should scrub the city out of the data and
record only the county. In food stores, a record of a $15,000 pur‐
chase is outrageous and should be flagged for potential errors,
whereas at an automobile dealership such a purchase is on the low
side.

If the shape of data changes, you must help business users reevaluate
its suitability for their applications. Organizational needs change
also. For instance, a speed-up in decision making or a push for
finer-grained accuracy may call for more data and faster processing.

Business Intelligence (BI) and Serving the Analysts
Before the pressures of modern data processing led to constant,
changing requirements for analytics, a kind of staged, waterfall
approach to developing data was in effect. The analysts would think
up a research project and ask for a graph or table of data. The DBA
would find the data and provide it to programmers who would cre‐
ate the visualization for the analysts.

In today’s data engineering environment, analysts want immediate
access to data, although they will probably wait for the data engineer
to clean it. The analysts will then create new tables of derived data,
which they want updated quickly—perhaps on a real-time basis—
with the latest data. So the data engineer will implement the analysts’
transformations as a pipeline that accepts streaming or batch input
and outputs the necessary visualizations. One way to look at the
relationship between analysts and data engineers is that analysts cre‐
ate a prototype, after which data engineers create a production
system.

Example of Data Exploration
Qubole used this kind of iterative process to create a Presto-as-a-
service connector for Microsoft’s business analytics tool Power BI,
designed to help data engineers and data scientists uncover impor‐
tant fields and their relationships by running queries across multiple
data sources. Data analysis often combines fields from relational and
nonrelational data. You can read about it in more detail on the
Qubole blog.
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Batch versus streaming
Data engineers serve many types of users in different ways.
Although streaming data, which comes in quickly and continuously,
is the hot topic in data circles, most data analysts still derive insights
from large quantities of data through batch processing. When this
report contrasts batch data with streaming data, it’s not talking
about some trait inherent in the data, but simply how the data is
processed. If you store it in a file or database and run analytics over
large numbers of records or rows relatively slowly, it’s batch data.
The very same data may be delivered in a steady stream and con‐
sumed one message at a time. Thus, streaming data tools also often
operate on batches of data sent as files. Sales information and other
transactions often come through this way.

Many applications treat the same data in a batch and streaming
manner. For instance, a fraud detection application might run ana‐
lytics over large data sets to assign traits to customers, then compare
those traits to the same data received in real time in a streaming
manner to determine whether a particular credit card transaction is
fraudulent.

“Streaming Data Processing” on page 41 lays out some popular tools
for streaming data and their uses in data engineering.

Limitations on Data Use
With the rampant collection and crunching of data, ethical issues
also arise. Governments, as well as the general public, are now tak‐
ing security and privacy more seriously, as we see in the rush to pre‐
vent a repeat of the kind of use Cambridge Analytica made of
Facebook data. More recently, Twitter has admitted to misusing data
for advertising. Everybody understands the need for Twitter to col‐
lect personal data to serve its users, and Twitter advertising is also
widely accepted—the problem comes when data is used for a pur‐
pose that it shouldn’t be used for.

As another example of the importance of social expectations, con‐
sider the famous case in which Target sent pregnancy-related offers
to a 17-year-old who was trying to hide her pregnancy from her
father. This public relations disaster highlights the differences
between laws, ethics, and plain good sense about business goals.
Legally, Target was perfectly entitled to send pregnancy-related
offers. Although there’s a difference between personal medical infor‐
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1 Disclaimer: this paragraph is an extremely simplified summary, not legal or technical
advice.

mation and routine retail sales like potato chips, Target was also
probably within reasonable ethical bounds in sending the pregnancy
information. Where the company fell short was in considering what
customers or the general public would find acceptable.

These social expectations also vary based on the type of data: most
people are much more worried about the sharing of medical or
financial data than data about everyday purchases or location data,
although anything is potentially open to abuse. Even everyday loca‐
tional data or postings of photos with labels to identify people can
be a life-and-death matter for victims of domestic violence who are
hiding from abusers.

One practice adopted by many organizations is to flag sensitive data
through metadata; you might mark data with a pointer to the terms
and conditions under which it was collected. Another good practice
is to store sensitive data in completely separate data stores from less
risky data. No one should even receive the data within your organi‐
zation if they are performing tasks that weren’t included in the terms
and conditions (as in the Twitter case just cited). Finally, you can de-
identify data if the precise values aren’t needed for certain types of
analytics and for duplicate versions of data used for testing. De-
identification may involve substituting synthetic data for real values
or switching around fields, so that the totals are all correct but the
values (such as age or medical diagnosis) are assigned to people at
random.

Higher stakes are imposed on improper data use by legal require‐
ments such as the European General Data Protection Regulation
(GDPR), the US Health Insurance Portability and Accountability
Act (HIPAA), and the CAN-SPAM Act. Violating such regulations
can lead to millions of dollars in fines, and the European Union in
particular has shown the resolve to take the GDPR seriously. So it’s
important to stay up to date on standards and regulations affecting
data use in your industry, as well as to set up your systems to avoid
inadvertent violations by your users.

One headache added—probably unintentionally—by privacy laws to
the data engineer’s task is the “right to be forgotten.” If someone liv‐
ing in a jurisdiction covered by a “right to be forgotten” law (includ‐
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ing the European Union and California) presents a court order
telling you to suppress data about the person, or if consent to store
the data is withdrawn or expires for other reasons, you have to stop
sharing data about the person, at least within that jurisdiction.

You might comply with a “right to be forgotten” order by finding
every instance of the data and permanently removing it, or keeping
it for internal use and aggregate data but making it unavailable
within that jurisdiction. The data you need to delete might already
be in many different columns in a number of tables and data stores.
Deleting data could also make the data store inconsistent with previ‐
ously calculated aggregate data, such as an average, although the
effect of a single deletion is probably negligible.

Some sites maintain PII in one place and link it to a random identi‐
fier that contains the non-identifying information. If instructed
to forget the person, these sites can simply delete the link between
the PII and the random identifier, anonymizing the person’s
information.

Beyond the firm conditions imposed by terms of use and regula‐
tions, it is valuable to think about the purpose of data use. Will the
uses open up new opportunities for your employees and clients? Or
will they exploit people and put them at a greater disadvantage in
relation to large institutions that control aspects of their lives? Con‐
straining people from doing bad things, such as committing fraud
or posting false news stories, is necessary in order to give legitimate
activities room to spread, but most data use should be aimed at sup‐
porting people in doing what they desire.

Data Is Different Today
When computer databases first became widespread, most data came
from human input: paper forms sent in by customers, receipts from
sales, and so forth. Nowadays we have a plethora of data sources:
sensors, cameras, log files from web servers or other hubs, social
media, and more. Naturally, the volume of data is much greater.
Other changes in data are more subtle.

Architectural challenges
The types of errors generated by automated input are different from
errors in human input. Error-checking must be done differently, and
the enormous data sizes call for automating this error-checking.
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Provenance also becomes important: who supplied the data, what
form it came in, and how trustworthy it is.

Errors in human-entered data include:

• Simple typographical errors, such as typing “Carloine” for
“Caroline”

• Data typed in the wrong field, such as entering the state in the
field meant for the city

• Incomplete records
• Skipped records, records entered twice, or data from one record

mixed with data from another

In contrast, when data is taken from machines or automatically gen‐
erated sources, errors tend to be more systemic:

• Corrupt files that can’t be read
• Columns that are marked incorrectly
• Missing metadata
• Values that are way out of range, such as temperatures of

600,000 degrees for a factory machine
• Values that are converted incorrectly, such as making every field

100 times the value it’s supposed to have or (famously) inter‐
preting measures as metric units when they were provided in
imperial units

Many errors that would be caught through traditional ETL, because
they break the schema, can slip through in the modern data era. For
instance, if the person doing data entry put a name into a field for
age, a database would reject the record because the age has to be an
integer in order to be stored in that column. A representation in
JSON has no built-in check to make sure the age field is an integer.
Some modern data formats such as Parquet would reject the bad
field, because these formats define data types similar to those found
in relational databases.

Automation is required to catch both human-entered and machine-
entered data on a large scale. For instance, commercial tools exist to
read large columns and determine that “DF” is not a correct state
abbreviation, but that “DE” appears many times and might be the
right substitute. The tools can autocorrect where changes are obvi‐
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ous and present unclear errors to a human for correction. Data prep
may take place in several stages, and some of the advanced process‐
ing might not be done until users make a specific request for data
for a particular purpose.

You should understand the shape, quality, and granularity of your
data in order to help business users use the right data and choose
appropriate analytics, as discussed in “Evaluation Process” on page
8. Provenance metadata can also specify these aspects of data that
allow it to be used accurately and productively.

Architectural evolution
All the practices discussed in this report spring from a fundamental
change in the structure and storage of data. For three decades, the
notion of “Don’t Repeat Yourself ” (DRY) or “a single source of
truth” drove relational design, and in particular the concept of nor‐
malization. When E.F. Codd published his historic paper on the
relational model in 1970, expensive disk storage also mandated
eliminating duplication.

The classic relational model forced a single source of data to satisfy
all needs. Indexes sped up access to various columns so that one
user could search by date and another by customer name. Now the
factors of the storage equation have changed: we prioritize fast
access at the expense of added storage. Opening multiple tables to
get, for instance, a purchase order followed by customer name fol‐
lowed by address would be too slow. Better to keep all the informa‐
tion you need in a single row, even if this means repeating yourself.

As the size of data swelled and performance declined during the
1990s, the classic relational model was relaxed by providing sum‐
mary tables and other conveniences in data warehouses. But by the
early 2000s, it was time for a new paradigm. The solutions that were
discovered during that period speed up access to data using a variety
of practices. Most of these practices prioritize read performance
over write performance, and therefore work best on data that is
written once or updated rarely.
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Best Practices

• Data meets different needs by being duplicated in
different tables and databases, each sorted by a
single key instead of providing multiple indexes.
Because retrieval from such dedicated data stores
has become simpler, users tend to interact with
them through programming languages instead of
SQL.

• Data is partitioned by key to allow each user to
query a single node, or just a few nodes, to get the
data needed for the application such as the sales
for a single country. Access is accelerated even
more by reading a whole data set into memory,
when possible.

• Partitions, whether done dynamically on stream‐
ing data or statically on stored data, allow parallel
processing by short-lived processes that live in
virtual machines or containers.

Because the data stores discussed in this report are used for analytics
instead of transactions, users don’t ask for strict consistency, such as
Atomic, Consistent, Isolated and Durable (ACID) guarantees. Data
is processed in stages to provide better value to users, with the goal
being to get fresh data to the users quickly. The complicated
acknowledgements and checkpoints that would be needed to ensure
that every copy is in sync would just slow down the process. How‐
ever, to preserve historical accuracy, the raw data is usually pre‐
served as long as space restrictions make it practical to do so.

Structuring Data
Modern data stores categorize data quite differently from relational
databases. The basics of relational data are:

• The database stores each item of data as a record or row, con‐
taining a fixed set of fields or columns. Columns cannot be
repeated within a row. For instance, if a customer makes two
purchases, you create a separate table of purchases and use a
join table to indicate which customer made which purchases.
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• Each column is marked with certain metadata, especially a type
(such as integer or date) and a size. Many types, such as integers
and strings, reflect the underlying representation of the data in
the hardware and operating system. Getting column sizes right
is important for efficient storage, and variable sizes are used
only when fixed sizes are unfeasible, because more space is
required to indicate variable-sized columns.

• Keys are important, and a unique key (one whose value has to
be different in each row) almost always appears in each table.

• Relational data cannot be nested. Most relational databases
nowadays allow you to store certain structured formats such as
JSON or XML, but they are a foreign format embedded into a
relational database column. If you query for a JSON field, you
are actually running a JSON engine inside the relational data‐
base engine.

The preceding rules feed into the rules of normalization, which are
tied up with the relational model. Most sites find it useful to violate
the rules of normalization to improve the performance of certain
operations. Providing data in different tables for different users is a
common feature of data warehouses, and it is at least as common in
the age of big data. You must be willing to convert the data into a
different schema or group of partitions for different applications.
Applications that process millions of rows can’t afford to query six
tables to retrieve all the data they need; instead, a data engineer pre‐
pares a table in advance that combines all the data needed by that
application, and perhaps performs some preprocessing to store
aggregates such as maximums and averages.

Many of the traits of relational databases change or become irrele‐
vant in other types of data stores that are now broadly popular.
Some superficial traits remain: big data still represents items of data
as rows, and the columns or fields are often marked with data types
such as integer and date. Keys are also nearly universal. But most
other common rules from relational data disappear, and normaliza‐
tion is ignored or treated as an option for certain appropriate sub‐
sets of data.

Many modern data stores allow arbitrary fields in each row, as in
JSON or XML. There can be fields in some rows that don’t appear in
others. And there can be multiple fields of the same name in a single
row, so that two or more purchases could appear in a single cus‐
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tomer row. If you choose to create a separate table of purchases,
that’s probably not done to normalize the data but to speed up oper‐
ations that search for and manipulate purchases. Nested data struc‐
tures are common in data rows, along with data structures not
recognized in the relational model, such as lists, arrays, and maps.

Because storage is more ample and compute speeds are faster than
they were in the 1970s when the relational model was designed,
variable size is commonplace and few data stores ask you to assign a
size to a column.

Fields, Columns, and Schemas
The key difference between the relational model and big data
projects is that the latter have a looser idea of a schema.

Traditional projects involve long planning times to define relational
schemas before data collection can begin. Even though big data
projects are often called “schema on read” (which suggests that the
data can be written in any format and structured later by the user),
the projects need planning for data structures, too—but this plan‐
ning requires significantly different kinds of thinking.

MongoDB, Cassandra, and other nonrelational data stores are by no
means raw data; they still expect input to have structure. But the
structure can differ for each row. These kinds of databases are some‐
times called document stores because they have nested key/value
fields resembling the structures found in HTML or XML
documents.
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If data arrives in a key/value structure such as JSON, storage is easy.
But unstructured data, such as postings on social media or
multimedia files, requires some work to add identifying metadata.
For instance, you can add a date-and-time stamp to serve as a key.

The MapReduce programming model used by Hadoop expects each
record to start with a key. The rest of the record is the value. It’s the
job of the programmer to create each key. Thus, if a MapReduce
program is seeking to collect data on different countries, it might
extract the “country” field from its input and use that as the key. The
key will also start the record when it is stored.

Best Practice

If you know that a field will be specified often in quer‐
ies, consider adding an index to it.

Most modern data formats also support indexes, which serve quer‐
ies in ways similar to relational databases. In addition to support by
databases, indexes appear in several formats that are popular for
storing big data. It’s optimal to add these indexes after data has been
loaded so that data is smaller during initial ingestion.

Example: Duplication and Normalization
“Architectural evolution” on page 16 explained how the current gen‐
eration of data maintainers has accepted the duplication of data.
Let’s look now at a small example of structured data to see why you
need the flexibility that modern data formats offer instead of stick‐
ing to the relational model. Imagine a simplified data structure for a
purchase, as shown in Figure 1-1.
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Figure 1. Sample record structure

A JSON representation of a purchase might look like this:

{
  "Purchase": {
    "Customer": {
      "Name": "Alan Fentolo",
      "Address": {
        "Street": "56 Spring Road",
        "City": "Jonesville"
      }
    },
    "Product": {
      "Item": "Tie",
      "Color": "Green"
    }
  }
}

Suppose an application retrieves all the city fields from several mil‐
lion purchases to improve marketing. In each purchase, the applica‐
tion has to find the customer field. Then, within the customer field,
it has to find the address field, and within that find the city field.
This means three retrievals for each city, a task that a programmer
would call dereferencing fields. If structures are deeply nested, the
extra dereferencing could add up and degrade performance. (The
problems of relational databases are similar because a search for a
field may require joining tables or querying one table to get an ID
that you search for in another table.)

So you might choose to take the city field out of the customer field
and make the city a top-level field within the purchase. This saves
two dereferences.
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And what if another application retrieves item fields from the prod‐
uct fields? A purchase can probably contain several products, and
you might want to know with which product each item is associated.
So you might keep the item nested within the product or create a
new field that combines the product and item.

Best Practice

When you duplicate fields, to maintain a single source
of truth, use metadata to mark the original copy that
becomes the source for other copies. Enforce a data
flow that updates the original copy and then lets the
update flow out to other copies.

In the old way of working, a DBA would give users access to selected
fields and rows through views, avoiding the need to copy data to a
new database. Views are also supported by some of the newer
database engines, such as MongoDB, and can be useful in data
engineering.

Structured Storage Formats
Some data stores have their own internal formats. But many big data
projects need input or output in a standard, interchangeable format.
The Hadoop Distributed File System (HDFS) also allows data to
have any structure of your choice. So data engineers can spend con‐
siderable time researching different storage formats and choosing
the right ones for their applications.

One major choice is whether to store data row by row or column by
column. Traditional databases store data row by row, with all the
columns in a row stored together (except for a few particular cases,
such as large unstructured fields known as binary large objects
[BLOBs]). This storage makes it easier to write data because most
operations add or update a set of rows through a WHERE clause
(for instance, WHERE COUNTRY = US). These databases are used
mostly for transactional applications, which retrieve several col‐
umns from a particular row for a customer, a product, or something
similar. Row storage here is natural and convenient because the data
wanted by each query would probably be stored together on disk.

Many modern applications perform much better with columnar
storage because column sizes can vary more widely. Therefore, more
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recent database offerings—relational and nonrelational—often fea‐
ture columnar storage. Relational databases tend to offer multiple
options for ordering data, and let you run a single query over these
different storage formats.

Avro, ORC, and Parquet are popular storage formats in the big data
world. Avro uses row storage, whereas ORC and Parquet use colum‐
nar storage. In other ways, they provide very similar functionality.
They let you create hierarchical data structures, support lists or
arrays, store the data in binary format, and offer various types of
compression. ORC and Parquet offer indexes.

Typically, you will send and receive data in JSON format. This for‐
mat was developed for use with JavaScript (hence the J in the name),
has become the most popular format for data exchange on the web,
and is turning up in all sorts of other contexts requiring structured
text data. For internal storage and processing, you will convert the
data to one of the binary formats such as ORC.

Best Practice

The cost savings you get by transferring and storing
binary data will be well worth the effort of conversion
back and forth between text and binary formats.

Naturally, there are differences between the formats. Avro is key/
value, whereas ORC and Parquet have primitive types such as in a
programming language: numerical, string, date, time, and so forth.
You can build up structures using the primitive types, and Parquet
also allows you to create logical types on top of the primitive ones.

There are other storage formats for structured data, such as Google’s
protocol buffers and Apache Thrift, developed by Facebook, but the
most popular formats currently are Avro, ORC, and Parquet.

Although these formats do not fit into relational schemas—because
they are hierarchical, offer data types such as lists and maps that
SQL doesn’t understand, and are incompatible in other ways—they
can be read and written using the SQL technologies associated with
big data, such as Hive, Impala, and Presto. Major programming lan‐
guages also provide libraries to work with the formats, so that appli‐
cations can easily read and write them.
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Data Warehouses and Data Lakes
Modern data stores were developed in the 1990s and 2000s, when
sites handling big data found relational databases too slow for their
needs. One major performance hit in relational databases comes
from the separation of data into different tables, as is dictated by
normalization. For instance, a typical query might open one table
and offer a purchase number in order to obtain the ID for a cus‐
tomer, which it then submits to another table to get an address.
Opening all these tables, with each query reading new data into the
cache, can drag down an analytics application that consults millions
of records.

To accommodate applications that need to be responsive, many
organizations created extra tables that duplicated data, stretching the
notion of a single source of truth to gain some performance. This
task used to provide a central reason for ETL tools.

The most popular model for building storage of this type as a data
warehouse involves a “star” or “snowflake” schema. The original
numeric data is generally aggregated at the center, and different
attribute fields are copied into new tables so that analytics applica‐
tions can quickly retrieve all the necessary data about a customer, a
retail store, and so on. These non-numeric attribute fields are called
dimensions.

While traditional normalized databases remain necessary for han‐
dling sales and other transactions, data warehouses serve analytics.
Hence the distinction between online transaction processing
(OLTP) and online analytical processing (OLAP). OLAP can toler‐
ate the duplication done in a data warehouse because analytics
depend on batch processing and therefore require less frequent
updates—perhaps once a day—than OLTP.

But in modern business settings, such delays in getting data would
put organizations at a great competitive disadvantage. They need to
accept and process streaming data quickly in order to reflect the fail‐
ure of a machine out in the field or to detect and prevent the fraudu‐
lent use of a credit card. Data must also be structured on the fly; data
analysts can’t wait months or years for a DBA to create a new
schema for new data.

Therefore, the structure of relational databases, which handle ana‐
lytical processing in multiple steps, renders them inappropriate for
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big data. The new data stores look back in computing history to
databases with simpler structures that don’t try to be all things to all
people. This means you have to choose the particular data store
that’s best for each application, then determine how to structure the
data to make access as fast as possible.

Modern data environments tie together data sets of many types and
sizes, refreshing them from multiple data sources. Because these col‐
lections of data are handled so differently from data warehouses,
organizations like to call them data lakes. Often, organizations also
link to outside sources and retrieve data from them as needed. For
instance, Server SQL’s PolyBase lets you join multiple sources in an
SQL query: internal and external, or relational and nonrelational.

Provenance and catalogs are key to making a data lake work. If you
lose track of what you have in this diverse collection, you end up
with what data engineers fearfully call a data swamp.

Database Options
The major categories of data stores are:

Relational
The traditional databases developed in the 1980s and 1990s:
Oracle, IBM DB2, MySQL, PostgreSQL, and so on.

Document
These store data as labeled fields, like XML or JSON. Each
record or row can be of arbitrary length. Sometimes these stores
follow schemas, such as Avro, ORC, and Parquet. Other docu‐
ment stores, such as MongoDB and CouchDB, allow each
record to have a unique structure, naming each field.

Key/value
Stores each element as a key—which may or may not have to be
unique—and a value. These databases hash the key to make
retrieval by key fast, so key/value stores are sometimes called
hash tables.

The distinction between document stores and key/value stores
is fuzzy. For instance, Cassandra started out as a key/value store,
but has evolved into more of a document store. Any key/value
store can store a document as the value.
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Graph
These represent relationships, such as networks of people or
genealogies. For instance, each person can be a node or vertex,
while the relationship between two people is represented as an
edge. Graph databases are used by very few applications, but
can be valuable for those applications, so their popularity is
growing.

Search
These are specialized document stores whose indexes offer
sophisticated search capabilities. Examples include Lucene and
ElasticSearch.

Best Practice

Always consider the evolution of your data when
choosing a data store. Unless you are sure you are stor‐
ing legacy data that will not need new columns or
other changes, make sure to use a data store that
evolves efficiently.

Comma-separated value (CSV) files provide an example of a rigid
data store that does not evolve well. Suppose your data comes as
CSV files with the three fields: Repair type, Date, and Cost. You
might write an application that extracts the third field and stores it
in a database as the cost. But then the organization producing the
data could add a Time field after the Date field. Now your applica‐
tion is broken, because the third field is no longer the cost.

Hive is much richer and more flexible than CSV, but it actually suf‐
fers from similar problems. It generally uses HDFS as its data store
(although other formats are available), and HDFS was designed to
support individual applications. HDFS is not easy to adapt to future
uses. So early releases of Hive didn’t even offer an ALTER TABLE
statement. Various ALTER statements, similar to those used in rela‐
tional databases, were added later, but they are so inefficient that
many experts recommend you just read all your data into a new
table and overwrite the old one. Repartitioning can also encounter
this performance problem.

A few factors determine the performance and reliability of the data‐
base engine used:

26 | The Evolving Role of the Data Engineer

https://lucene.apache.org/core
https://www.elastic.co


Locality
If you can get all the data you want from a single file, access is
much faster. To handle big data, which rarely fits onto a single
system, data is partitioned into multiple files.

Furthermore, within the file, data that is sequential can be read
much faster. The query manager can get large chunks in a single
read, can take advantage of sequential access to read ahead, and
can often retrieve the following values from the cache instead of
returning to the original file. This aspect of locality leads to the
choice between row storage and columnar storage.

Metadata
Variable-length character data takes up more space and takes
longer to query than fixed-length character data, because you
need extra metadata in each row to record how long each
variable-length field is. Similarly, document stores take up more
space than database schemas because each record can contain
arbitrary fields. Thus, the key for each field must be stored with
the value. Some modern binary data formats (notably Avro)
optimize this extra storage by defining a schema and applying it
to the row.

Locks
All databases used in big data allow concurrent access for per‐
formance reasons. To prevent corruption, rows or tables must
be locked during reads. These locks take up space, and pro‐
cesses trying to write data must wait for the locks to be released.
Various schemes work around locking, such as by assigning ver‐
sions to data as it is updated, in order to minimize the perfor‐
mance degradation caused by parallel access during writes.

Each database makes different trade-offs for these technical choices.
The underlying files used by a database on its host operating system
are normally hidden, but some aspects may be exposed; for instance,
the administrator may have to allocate space for these files and back
up the files directly, instead of issuing commands at the database
level. Some modern databases, such as Hive, let you choose the kind
of file storage they use. Most people use Hive on top of HDFS, but
you can use flat files or other types of storage.
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Access to Data Stores: SQL and APIs
Hadoop and other modern, nonrelational databases provide APIs,
which can quickly carry out the basic database operations known as
CRUD (Create, Read, Update, and Delete). Thus, it’s well worth
learning a programming language in order to use these APIs. SQL,
even though it’s the common way people interact with relational
databases, should be considered a high-level language that imposes
overhead. The SQL query optimizer takes up overhead through such
activities as deciding on the order in which to execute a WHERE
clause, and whether to consult indexes. Thus, even relational data‐
bases have raw, direct APIs. Someone planning an application and
exploring the data will find SQL useful at that stage, but most pro‐
duction applications in big data use APIs.

The Hadoop family of tools was designed in the mid-2000s and
mostly offers Java interfaces. But many people find it easier to use
Python, Scala, or other interpreted languages. Because you can try
out interpreted language statements using an interactive command
line, development can go faster. These languages also lend them‐
selves to more compact source code than older languages such as
Java. If you learn Python or Scala, you can probably interact with
any of the modern databases. Jupyter Notebooks, which are interac‐
tive environments allowing you to try out programming code, are
also popular to start development.

But because both developers and DBAs have been accustomed to
using SQL, and because it can be a convenient way to explore a data
set, nearly every database supports some SQL-like language, even if
the database is a document store or has some other kind of nonrela‐
tional structure.

HDFS is just a filesystem designed to handle large files with replica‐
tion. The filesystem imposes no structure on the data within it, but
Hadoop and most other programs use it to store individual records
with keys. Hive and Impala create schemas on top of HDFS to repli‐
cate the relational model. You cannot use these extensively to exe‐
cute complicated queries, though, because the underlying data stores
don’t have the relational structure that supports the execution of
arbitrary queries. If you try to include too many clauses, perfor‐
mance will be unfeasibly slow. For instance, the early versions of
Hive didn’t even have UPDATE and DELETE statements, because
the underlying HDFS filesystem is optimized for continuous writes.
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Hive and Spark SQL are frequently used SQL interfaces to HDFS.
Another interface, Pig, implements less of the standard SQL lan‐
guage, but offers special operations that are useful for filtering and
other big data operations. Pig balances traditional SQL queries with
the kinds of programming functions used for analytics.

Best Practice

For big data, engineers should get used to program‐
ming APIs for ingestion, transformations, and other
production purposes. SQL is useful to explore data
sets, and as an interface to data catalogs so that users
can discover data sets.

Hare are some newer SQL-based tools that are attracting attention:

Iceberg
Iceberg claims to solve some performance and reliability prob‐
lems found in HDFS. Even though it’s still in the “incubator”
stage, it’s gaining a lot of attention. One of its goals is to allow
in-place table maintenance. A schema redefinition, such as
ALTER TABLE, will work much faster in Iceberg than in Hive.

Iceberg partitioning is more sophisticated than Hive partition‐
ing. When you query data, Hive requires you to specify which
partitions to search, along with the values in a WHERE clause.
Iceberg has a feature called hidden partitioning, which infers the
partition containing the data from your query. Thus, if you have
partitioned the data by a date column and your WHERE clause
specifies that date column, Iceberg will automatically find the
right partition.

Finally, Iceberg handles writes in ways that the developers claim
will benefit both performance and reliability. For instance, it
supports concurrent writes by creating a new file and perform‐
ing an atomic swap if there is no conflict. This is a typical com‐
puting tradeoff: using more memory to save time.

Presto
Presto may be replacing Hive and Impala as the preferred SQL
interface to HDFS. It’s appealing because it also works
with MongoDB, Cassandra, ElasticSearch, Tableau, traditional
databases, and even flat files; it has about 20 connectors to such
databases as of early 2020. It can also work over Kafka to handle
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streaming data so that a single Presto query can combine data
from multiple sources, allowing for analytics across your entire
organization.

Presto is designed for distributed queries, working across many
nodes in parallel. You can tune it to respect the amount of
memory on nodes where its workers run, and you can set limits
on resources used. You can combine nodes into resource groups
and allocate different amounts of resources to queries on these
resource groups.

Authentication uses Kerberos, but a simple form of username/
password authentication with Lightweight Directory Access
Protocol (LDAP) is also available.

SQL has met critical research needs for decades, so it can still be val‐
uable for issuing the kinds of queries where it functions well on both
relational and nonrelational databases. Recognize, however, where
other types of batch and streaming analytics work better with the
newer tools and APIs.

Cloud Storage
More than three-quarters of organizations now use third-party
cloud services, which offer a variety of free/open source and com‐
mercial data stores along with their own proprietary offerings. Some
vendors claim that their proprietary data stores offer better perfor‐
mance than other data stores running in the cloud. Nevertheless,
many data engineers avoid the vendor’s unique offerings because
they want data to cross cloud boundaries. They might be running a
data store on-premises as well as in the cloud—a hybrid public/
private deployment—or they might simply be afraid of vendor lock-
in. You can easily transfer data in and out of the cloud, but your use
of the data may become dependent on the optimizations offered by
your cloud vendor.

How cloud storage differs and is similar to on-premises storage
Whether you deploy a standard data store or one of the cloud ven‐
dor’s alternatives, the advantages in scalability and reduced adminis‐
tration certainly make the cloud appealing. Security is probably
controlled better in cloud environments than the staff in most
organizations can muster, although the use of the cloud has no
impact on the most common reasons for breaches: abuse by insid‐
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ers, and access to employee keys by intruders through phishing or
other attacks.

When you run your own data center, you can design it to keep
related items of data close together, thus improving performance.
For instance, all the partitions needed by a particular application
could be stored on a single rack. There are similar capabilities in the
cloud: besides choosing a region and availability zone close to the
user, you can configure the cloud service to locate nodes in proxim‐
ity to one another.

As you evaluate major cloud offerings, you will encounter unfami‐
liar tools developed by each vendor, along with familiar offerings
running inside the cloud. This is a bit like visiting a grocery store in
a foreign country: popular products in one country are often copied
and offered under a new brand name in another. However, products
from your own country may also appear under their own brands.
The same goes for tools in the cloud.

The major vendors compete vigorously, but each does things differ‐
ently. So you might find that something you need is very simple at
one vendor, but requires a difficult multistage process at another. Of
course, each vendor will try to sell you their own solution as the
best. It’s a bit like buying an automobile: a luxury car dealer is very
good at persuading you that you need their luxury car, but you
might end up just as happy with a budget sedan.

Naturally, data engineering requirements are not the only considera‐
tions that go into choosing the cloud—many other departments will
insist on various needs. But data engineering is the foundation for
making data accessible and useful, so management should respect
data engineering’s requirements.

As in many situations where public or open source tools coexist
with commercial offerings, you have to make a tradeoff between the
power and convenience that cloud vendors offer and the risk of
lock-in. The cloud offers ways to help you keep your options open,
through tools that aid in data transfer (so you can maintain multiple
cloud services or a hybrid system using your on-premises equip‐
ment together with the cloud) and standards in key areas such as
data formats.
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Platform as a Service and serverless options
An important trend in cloud computing is Platform as a Service
(PaaS), or “serverless” computing, where you write functions and
submit them to the cloud to run. PaaS is well suited to the trend in
software development toward using containers. Developers using
PaaS or serverless computing don’t have to package an operating
system with their functions, and they worry less about the operating
system in general.

The major cloud vendors—Amazon Web Services (AWS), Microsoft
Azure, and Google Cloud Platform (GCP)—keep expanding their
offerings month by month, with the goal of providing you with a
complete environment. Like shopping malls, they hope to meet all
your needs and keep you on their virtual premises all day. They also
have moved “up the stack” to offer not just storage and compute
power, but packages of tools that are easy to get started with.

Best Practice

You should be clear about how you will use data (see
“Evaluation Process” on page 8) before talking to ven‐
dors and investigating their offerings.

Example options
Here are a few examples of tools from major cloud vendors that
resemble the free and open source ones described earlier in this
report:

AWS
Athena is an SQL query tool based on Presto.

Data Pipeline is an orchestration tool that can transfer or ana‐
lyze data on a schedule.

DynamoDb is a data store that offers both key/value and docu‐
ment formats, as Cassandra or MongoDB do.

Glue is an ETL tool that can discover schemas in semi-
structured data and ingest it into AWS data stores.

Kinesis is an ingestion tool similar to Kafka, supporting streams
in multiple types of media.
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Azure
Data Catalog helps you extract metadata and set up a catalog for
users to search for data they can use.

Event Hubs is a streaming data ingestion service like Kafka.

Table Storage is a semi-structured database.

GCP
BigTable is a highly scalable key/value data store storing semi-
structured data.

Dataflow is a framework for transforming and enriching both
stream and batch data.

In addition to these three major vendors, Databricks deserves a
mention for its popular analytical solution, built on Spark.

Object and Tiered Storage
The rethinking of storage among big data users has extended to the
architectural depths of disk structures and operating system choices.
As an alternative to the standard block storage offered by conven‐
tional filesystems, cloud services and open source projects offer
object storage, meant for types of data that aren’t expected to change
or be edited. Object storage is popular among organizations that
store large amounts of multimedia files such as audio and video, or
that archive large amounts of data that they might need access to in
the future.

Object stores also scale efficiently, making them a good choice when
you want to quickly append BLOBs or store large write-once data
such as logs. In the cloud, common object stores include Amazon
Simple Storage Service (S3), Azure Blob, and Google Cloud Storage.
Cloud services also offer tiered storage, where you can trade off cost
for access time, and even define policies, so that (for instance) an
object moves to a slower, cheaper tier after 30 days, then switches
into a cold archive after one year, and finally is deleted after a time
of your choosing to meet regulatory or tax requirements. Options
like this appear on AWS, Azure, and GCP.

Object stores are cheaper than block storage because they don’t pro‐
vide random access to data. In fact, they don’t even provide a direc‐
tory structure, although sometimes they let you simulate one, just so
you can keep a logical inventory of what you have.
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Best Practice

Maintaining robust metadata on the objects you store
is crucial, so that users can find objects later.

Object stores require study because they differ a lot from one
another, as well as from block storage. You may have to learn a spe‐
cial API to read and write to and from each object store. Investigate
the architecture of the object stores that interest you to understand
how to best make use of traits such as scalability.

Metrics such as bytes that are added and deleted can help you make
better use of the object store. For instance, metrics may let you know
that it’s not such a good idea to archive data after a year, because
people are reading and writing it more often than you anticipated.
“Metrics and Evaluation” on page 44 discusses the types of metrics
you can capture and how they might be valuable.

Partitioning
Big data works by partitioning, or sharding, data. This lets dis‐
tributed systems store huge quantities of data on different servers as
well as process the data by dividing it up by natural sections.

Column selection
Choosing the right field on which to define partitions, along with
choosing the right keys and indexes, is crucial for efficient data pro‐
cessing. Think of slicing a grapefruit: if you do it properly, you can
easily extract the pulp, but if you slice the fruit at an odd angle, all
the pulp is stuck in hard-to-access places.

A similar concept turns up in Kafka, a popular message broker, as
topics. Publishers assign a topic, which is simply a keyword, to each
record they submit to Kafka. Thus, a stock reporting tool might use
the stock symbol of the company as a topic (MSFT for Microsoft
Corporation, for instance). Consumers subscribe to topics in order
to get just the records of interest to them.

Criteria for choosing keys and partitions
As one classic example of key/value pairs for big data, let’s look at
the paper introducing MapReduce by Jeffrey Dean and Sanjay Ghe‐
mawat of Google. Google needed to create a list of web pages from
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around the internet, indexed by each word. For instance, this report
would appear with “report” as an index, then again with “appear” as
an index—one appearance for each important word in this sentence.
Thus, their MapReduce algorithm accepted input records with a
word as the key and a URL as the value.

When you partition data for storage on a cluster of nodes, the choice
of key you use for partitioning depends on how applications will use
the data. One of the most important impacts on performance is the
number of files the application has to interact with. Thus, if your
application seeks data on particular cities, the database should be
partitioned based on the key containing the city. On the other hand,
for applications that process information based on date, the date
field should be used to partition the data.

Certainly, the partition size should be small enough so that each par‐
tition can fit on one host. That allows all the data for a particular key
you’re looking for (city, date, etc.) to be read more quickly because
it’s all local to a host. Similarly, you should structure partitions so
that all the data you need in each read can be taken from a single
file. Because the number of files opened has an impact on perfor‐
mance, you should not make the partitions too small; seek to make
them at least several megabytes in size. This might mean grouping
multiple dates into files that represent a week or a month, or group‐
ing cities by state.

Hive has a two-tier division of data: you can specify a column on
which to make partitions (dividing data logically), and further
divide each partition into buckets based on arbitrary hash values.

Dynamic partitioning
When you add data to a data store using Hive, you can specify a par‐
ticular partition to which the data should be added, such as the par‐
tition associated with a single date. This is called static partitioning.
However, you can also specify the date column as the partition and
let Hive determine, for each row, which partition it goes in. This is
called dynamic partitioning. Hive can also create a new partition if
necessary when you use dynamic partitioning. If partitioning along
each value (such as one partition per date) would create too many
partitions, you can limit the number created.

If you create partitions by processing data with Spark, you can use
the flexible orderBy method to write partitions that will be efficient
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to read. Using that method, start by listing all the columns on which
you want to partition data. If you want to further subdivide the data,
specify next the columns on which you often filter data. You can
then subdivide the data even more by listing high-cardinality col‐
umns (that is, columns that contain many different values, such as a
unique ID). Spark can estimate the sizes represented by the values in
the columns and can partition a skewed distribution so that it’s
evenly divided among partitions. A smart use of orderBy clusters
data to make reads faster and avoids having files that are too small.

Because partitioning on the basis of the application is so important,
what should you do if different applications need access to the data
based on different fields? Creating indexes on those fields will boost
performance, if the database supports indexes. (MongoDB,
Cassandra, and CouchDB all support indexes, for instance.) Each
index adds a small size burden to the database, and a larger time
burden that affects each write, so indexes should not be used lav‐
ishly. And indexes do not substitute for efficient partitioning. So
another option is to duplicate the data, using a data store for each
application with the proper partitions.

Choosing the Right Data Processing Engine
In the past, DBAs often added data to their databases manually or by
running ad hoc scripts. Employees then used ETL or ELT products
to transform the data into a form appropriate for the organization’s
applications. Organizations exchanged data through file transfers.
This can be very efficient for transferring large files using large buf‐
fers with very little overhead. The sender might transfer data once a
day during a low-volume period such as the middle of the night.
Once you have a file on a local system, you can read millions of lines
a second, particularly using the readlines call offered in many lan‐
guages to put large chunks of a file into memory before reading
individual lines. Another process puts the data into the right schema
for the database that stores it.
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Best Practice

Don’t give up simple file transfers if they work for your
data. Even the more modern MapReduce data process‐
ing used by Hadoop is file based. Bulk data transfers
between different forms of storage can use Apache
Sqoop and other tools.

But modern organizations often want data within milliseconds, not
days. Furthermore, data that comes over the web or from sensors
streams as a constant flow of small updates. Traditional ETL can’t be
used with such data either.

Often, data is stored exactly as received in its raw format and then
processed later. Automation has become indispensable with the
growth of new sources, while the introduction of streaming data
requires new tools for ingestion and transformation.

This section looks at two sets of modern tools for these tasks: mes‐
sage brokers and streaming processors. Examples of earlier message
brokers for low-speed data transfer include RabbitMQ and
ZeroMQ, but the speed at which sources send data nowadays has led
to new tools with faster processing, notably Kafka, Flume, and Pul‐
sar. Streaming processors include Spark, Storm, and Flink. All these
newer tools are the modern equivalents of ETL and ELT. Although
they were created by the development teams at various corporations,
they are all maintained by the Apache Foundation.

Message brokers and streaming processors accept data from outside
sources and output their results to data stores or user applications.
Both can perform filtering along the way, but they are used for dif‐
ferent purposes. Message brokers do little or no transformation;
they simply decide where to send the data. In contrast, streaming
processors focus on data transformation or analysis. Message brok‐
ers are adept at handling multiple sources and destinations, whereas
streaming processors start with a single source and send data at each
stage to a single destination. Therefore, data engineers find message
brokers good for the initial ingestion of data, and streaming process‐
ors good for transforming the raw data after it’s ingested to produce
processed data that is more useful to the organization.

Successful projects tend to expand their functionality, so there’s
sometimes no clear line between uses for different tools. Kafka
Streams and Pulsar Functions let you run functions over data as you
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transfer it, thus mimicking the functionality of Spark and Flink.
Flume can also alter data through interceptors, which can add or
remove headers or use mechanisms as regular expressions to do the
more subtle alterations associated with streaming processors. Tools
from the older database era also evolve to meet modern needs.

Data Ingestion and Transfer: Message Brokers
Message brokers are the most efficient way to store data, so long as
you need little or no transformation. There are several reasons to
store the data in its original form and perform any transformations
you want later. First, the volume and velocity of incoming data
could be so high that you risk dropping data if you take the time to
process it. Second, a poorly programmed tool could corrupt your
data, and you’ll want to be able to return to the raw form to process
it correctly. Finally, you might not anticipate some need among your
users, and you might need to go back to the raw data and process it
differently.

So most likely, you will set up a message broker such as Kafka to
ingest data into a raw zone in your data center or the cloud. You can
then use a streaming processor, as described in the following sec‐
tion, to run transformations and enrichment requested by users on
this data in real time.

Message brokers all operate similarly, although they offer different
interfaces and have different architectures.

Each broker accepts streams of data from multiple sources or pro‐
ducers, and sends it to multiple recipients or consumers. The sour‐
ces are often called publishers and the recipients are called
subscribers, the entire architecture thus being called a pub/sub
protocol. The data is put on a queue until the subscribers are ready
to receive it.

Certain guarantees are provided by message brokers. Messages are
always delivered in the order in which the queue receives them.
Note that if multiple publishers send data to a broker, the messages
may not arrive in the order in which they were generated (in techni‐
cal terms, delivery is nondeterministic). Usually, therefore, each
publisher opens its own set of queues. Each item of data is placed on
one queue, and messages on each queue are delivered to subscribers
in the order that the messages entered that queue (with various
exceptions). The delivery of messages from different queues has a
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nondeterministic order, but this is not important because generally
each process subscribes to a single queue; multiple processes may be
consuming messages in parallel from different queues.

Kafka and Pulsar can replicate a message among multiple nodes in a
cluster for fault tolerance. The queues also provide some level of
persistence for messages until subscribers dequeue them. If a sub‐
scriber is slow or even fails and has to be restarted, the messages
remain until they are dequeued or the retention period expires. Pul‐
sar offers tiered storage, moving old data automatically to a slower
and cheaper cloud storage service.

Distributed systems must deal with messages that are lost because
network packets were dropped or because of other problems they
encountered along the way. To handle this uncertainty, some form of
acknowledgement is sent by the recipient of each message, and the
message broker retransmits messages after waiting a reasonable
amount of time for an acknowledgement. Following are the different
ways (known as semantics) to handle failures and transmissions:

At most once
The sender just sends each message and forgets about it. If the
message doesn’t reach the recipient, it is lost. For many situa‐
tions demanding simplicity and low overhead, lost messages are
OK. For instance, the IP and UDP internet protocols use these
semantics. But most big data applications would prefer to add
some overhead to guarantee delivery.

At least once
The sender waits for an acknowledgement for a fixed amount of
time, then resends the message. The message can therefore be
received multiple times by a slow recipient. The sender keeps
resending the message a certain number of times, after which
the sender assumes that the recipient has failed and gives up.

These semantics ensure that messages are not lost (unless the
recipient fails), but require the recipient to check for duplicates
and discard them. Generally, the sender assigns a unique incre‐
menting ID number to each message, and the recipient remem‐
bers which IDs it has received so that it can discard duplicates.
Kafka calls these IDs offset numbers because they represent an
offset into the queue, whereas most other systems call them
sequence numbers.
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Exactly once
The sender retransmits the message as often as necessary, just as
in “at least once” semantics, but middleware at the recipient’s
side checks for duplicates and makes sure that only one copy of
each message gets through. Thus, the recipient gets each mes‐
sage exactly once.

Kafka and Pulsar allow the subscriber to choose which of the three
semantics to use. Pulsar uses the term “effectively once” in place of
“exactly once”. Kafka’s designers claim that they can provide “exactly
once” semantics with only a small degradation of performance.
Flume offers only “at least once” semantics.

Message brokers generally also offer encryption through SSL to pro‐
tect transmissions from snooping or tampering.

Messages are directed to the proper subscribers through a variety of
filters. Kafka, probably the most popular message broker for big
data, requires the publisher to assign a string or keyword called a
topic. For instance, an application tracking water quality might label
messages with topics such as “bacteria” and “heavy metals” to show
what it’s reporting in each message. The consumer chooses topics in
order to control which messages it receives. Pulsar also uses the
term topic for the key assigned to direct the messages, but Flume
uses a more flexible concept called a channel to refer to a queue of
messages.

In Kafka, each message can be received by only one consumer. The
great benefit of using Kafka is that you can divide messages among
multiple consumers, exploiting parallelism to achieve the speed you
need. Kafka will break messages from each topic into multiple
queues that it calls partitions (which should not be confused with
the partitions in HDFS or other data stores). Each Kafka partition is
associated with a single consumer, so the messages are divided
among consumers by being queued on different partitions. (A con‐
sumer can, however, read from multiple partitions.)

Flume and Pulsar allow multiple consumers to receive the same
message. For instance, suppose you have an application that tracks
water quality and records a stream (no pun intended) of messages
with readings. One application might be interested only in readings
that exceed a certain value, indicating a danger that should be
reported to water authorities. Another application may be interested
only in messages that record lead levels, regardless of how high or
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low they are. And yet another may want all messages, which it stores
in a database. The proper messages will be delivered to each applica‐
tion. This is called multiplexing.

Sources are called spouts in Storm, and data passes from the spouts
through one or more bolts to be processed. Like Flume, Storm
allows multiple stages in a pipeline.

Streaming Data Processing
The processing of streaming data is an important task in today’s
analytics. Storm came along to enable the era of streaming data pro‐
cessing. Other tools with similar purposes include Flink and Spark,
which can handle both streaming and batch processing.

These tools can also be useful in data engineering because you may
be responsible for cleaning and prepping data. Streaming processors
can be useful for the task of transformation and enrichment (adding
provenance data, creating aggregate data, etc.) mentioned in “Data
Engineering Today” on page 4. Analytics can help you reduce your
data; for instance, your analysis of malfunctions in automobiles
might turn up 6,000 possible causes (also called features or dimen‐
sions), and analytics might reveal that you need to save only 12 of
them to accurately predict a malfunction.

Streaming tools grab incoming data, whether batch or real time, and
transform or run analytics on it. Their programming interfaces
exploit method chaining, a common syntax in modern program‐
ming languages, to set up pipelines. Spark can ingest data in batches
(Datasets or DataFrames) or as a continuous stream through a more
recent feature called Spark Streaming. Flink and Storm were
designed to work with continuous streams. These tools are widely
used by both data scientists and data engineers.

Example Workflow for Streaming Tools
Suppose you have a data set regarding restaurant visits that is upda‐
ted with new data several times a day, and that you have agreed to
perform a sequence of tasks on each data set to give your analysts
better data:

1. Add two fields indicating the date and time at which the data set
was received (provenance metadata).
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2. Convert all text to uppercase for consistency.
3. Remove certain sensitive fields such as credit card information.
4. Check for misspellings by running analytics. If “Towne Grill”

appears 600 times in a data set, and “Town Grill” appears three
times, the analytics correct the three “Town Grill” instances to
“Towne Grill.”

The streaming data tools may have built-in functions for some of
these tasks. For instance, in Flink you can issue UPPER for upper‐
case conversion, and one of several date and time functions to add
the provenance metadata. Other functions can be written by data
scientists or a data engineer who has learned some basic program‐
ming in Java or Python.

Development Best Practices
Like programmers, data engineers need a robust process for devel‐
opment, testing, bug fixing, and maintenance. Virtual machines and
containers make it easy to set up multiple stages or tiers for your
work: development, test, and production. You should also collect
metrics that help indicate where you can improve efficiency or the
use of your data.

Common Development Tools
To perform your task like a software engineer, you can adapt the
popular tools that programmers now use for the tasks of develop‐
ment and deployment:

Version control
This can manage everything you write in support of your work:
code, configuration files, test suites, and documentation. The
version-control system ensures that old versions of all these
resources can be retrieved quickly in case you find a bug and
need to roll back a change. Old versions provide a valuable his‐
tory, and you can use them to trace when changes were made in
case of a problem. They also play a critical role in tying together
a team, because everybody has access to the work done by
everybody else. You can even use version control to manage
contributions from outside your organization and free/open
source projects.
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Test suites
Many sophisticated tools allow you to check whether your code
carries out what you intended. You can routinely run these tests
for regression testing: checking for new bugs that are so often
introduced by fixes to other bugs or the addition of features.
These tests produce error reports in a standard format that lets
automatic tools check for and pinpoint problems.

Many developers need to write applications using databases, as
you do. Because setting up these databases can be cumbersome,
and queries tend to be slow compared to the tests themselves,
testers have created tools called mocks that provide synthetic
data. Mocks can save you a lot of time during early testing. But
they can’t simulate everything that can go wrong when writing
or querying an actual database. Many problems don’t emerge
until you are working with full data sets, at the same scale as
your production environment. So you will have to perform a
part of your testing on a test version of your full data. This also
means protecting sensitive data such as credit card numbers in a
test environment.

Continuous integration/continuous deployment (CI/CD)
These tools automatically move your code to the various tiers
and run your regression test suites when you check the code
into version control.

Bug tracker
This ensures that problems noted by users or developers are not
forgotten. You can also use them to route issues to the proper
person who can fix them, and to set priorities.

Integrated development environment (IDE)
This is a graphical editing environment that recognizes the syn‐
tax of the programming language or other files you use. An IDE
can save you a lot of time by doing cosmetic formatting, provid‐
ing autocompletion as you type, checking for syntax errors
(which can be annoying if it interrupts your writing, but can
prevent a lot of bugs, too), and integrating important tools for
testing and development.
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Metrics and Evaluation
Data analysis is driving modern organizational decision making,
and it can make your work more effective, too.

Collecting metrics is easy—all too easy. Cloud vendors practically
urge their metrics on you, and metrics are prolifically available on-
premises as well. The first and hardest job is determining what met‐
rics really offer the information that can help your organization run
better; you will probably change the metrics you collect as you learn
more about the organization’s needs.

Cloud vendors live by their metrics, so naturally they offer metrics
to clients on every cloud service. AWS integrates all these metrics
through CloudWatch, Azure through Azure Monitor, and GCP
through a metrics reporting service.

Best Practices

• You can automate the collection of the metrics
you choose to monitor and view them on dash‐
boards.

• For on-premises deployments, you can collect
metrics using Ganglia and produce graphs or
dashboards through a variety of tools. Commer‐
cial tools are also available.

Business metrics
It’s nearly impossible to make a link between available metrics and
big, mission-driven questions such as “Can our employees make
decisions that were not open to them before?” or “Did analytics help
us improve our annual results?” But organizations can measure
some aspects of user behavior, such as:

• How quickly a business user receives the data they request. If
this is unsatisfactory, you might need to restructure your data,
create new data sets and tables of aggregate data, or add hard‐
ware and software resources to speed up transfers.

• How often each data set is being used. A rarely used data set is a
waste of money. You have to determine whether it has a purpose
within your organization. If it could potentially provide value to
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many people who aren’t using it, you might need to improve
your tags and catalog.

• The speed of queries. This too had implications for data struc‐
ture, storage, and transmission.

Technical metrics
Business metrics are supported by lower, more technical metrics
such as:

• Time required to create a schema and ingest new data
• CPU, memory, and network usage
• Number and sizes of data sets
• Number of queries

Best Practice

Tracking CPU, memory, and network usage can help
you specify a budget. But they should be compared to
information about the size of data and the number of
queries, which can let you know whether you’re
expending more resources than you should. The com‐
binations of these metrics can point to areas where you
need to optimize your data. In a hybrid environment,
comparing on-premises metrics to cloud metrics can
also help you decide where to place data or look for
ways to use your cloud service more efficiently.

Examples of using metrics
Metrics are critical for uncovering failures and poor performance.
You should track job failures, which can turn up problems ranging
from insufficient memory to programming bugs. The tools used for
data engineering jobs, and the goals, are really the same as for any
other job.

Usage patterns may also help you with scaling and other planning.
Perhaps you ran a resource-intensive background job every night at
a time when you expect usage to be low—but one of your users deci‐
ded to run their own resource-intensive job at the same time, having
made the same assumption.
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Performance experts distinguish two major types of performance:
throughput and latency. Throughput measures the amount of data
you can deliver; it’s important when a user needs to process a lot of
information and can’t afford to fall behind. Latency measures the
time required for a single message or packet to reach its destination,
and is important when a user wants to respond in real-time to a par‐
ticular stimulus. Often you can improve both throughput and
latency by increasing resources. For instance, “Data Ingestion and
Transfer: Message Brokers” on page 38 showed how to improve
throughput by adding more instances of a streaming processing
tool. You can improve latency by increasing physical resources or by
moving data closer to the user (such as caching it on the local host).

Sometimes you must trade off between throughput and latency. A
good analogy here is a traffic light. During rush hour, the traffic
light changes once a minute or so, to let a lot of cars through at once
and thus maximize throughput. Late at night when very few cars
pass through, the traffic light is configured to change very quickly
when a car comes to the red light, because throughput is no longer
important and the critical variable is latency.

It’s important to experiment with performance changes, because you
may be surprised to find out that the impact you expected is not
what you actually get. For instance, router manufacturers in the
early 2000s reacted to congestion by adding more memory to devi‐
ces to buffer traffic, but actually slowed down traffic by doing so, a
phenomenon identified as bufferbloat. More commonly, an adminis‐
trator tries to fix a problem by increasing some resource that
actually was not the cause of the problem, thus wasting the resource
while leaving the problem unchanged.

Orchestration
Orchestration means putting in place all the tools and processes you
need for smooth operation. To understand what orchestration does,
imagine you’re an event caterer. You are managing the catered food
for a huge wedding party. Ten chefs are busy in the kitchen. As they
finish the appetizers, they load the food onto trays and start working
on the main course. Meanwhile, you notify five waiters to come and
deliver the appetizers. Because several events are being hosted at the
same venue, you want to make sure the waiters arrive exactly when
the appetizers are ready, but no sooner. (I have never actually
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worked for a caterer. This description is not based on reality, but is
just a metaphor to explain the concepts in this section.)

In computing, the basic elements of orchestration are resource man‐
agement, scheduling, and fault tolerance (also known as high availa‐
bility). Let’s use the catering metaphor to look at each.

Resource Management
Resource management, as discussed under “Development Best Prac‐
tices” on page 42, generally involves choosing a server with suffi‐
cient CPU, memory, and network bandwidth to run each task. Trial
runs can help you determine what resources you need for a particu‐
lar tool given a particular volume of data. Virtualization lets you
specify resources such as CPU and memory in very precise
amounts, whether through virtual machines, containers, or the
aforementioned online services known as serverless computing.
Running on-premises, you might spin up a container with the speci‐
fied resources. In the cloud, you might start a new instance of some
virtual machine.

In the catering metaphor, imagine that some events offer only appe‐
tizers, while others have sit-down meals. If the event offers only
appetizers, it needs five waiters to circulate among the crowd. For a
sit-down meal, it needs eight waiters. So the caterer hires a person‐
nel manager who makes sure that the proper number of waiters are
available when needed. If the facility runs out of waiters, some
events might have to wait until the waiters are no longer needed by
other events. But nobody gets more waiters than they need, so the
waiters are always busy.

In computing, the CPU and memory are the waiters. Hadoop offers
Yarn to do resource scheduling on top of a Hadoop cluster.

Scheduling
Let’s turn now to the scheduling part of orchestration. For data engi‐
neering, the equivalent of chefs could be developers checking new
tools for reading data into a version-control system, and the waiters
could be test suites. The manager in charge of scheduling would be
an orchestration tool that creates a workflow connecting the version
control system to the test suites. Each check-in to the version con‐
trol system automatically launches regression tests, which tell you
whether you introduced a change that will break the application.
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Thus, we are orchestrating a simple CI/CD workflow, a part of the
trend that several years ago was labeled DevOps. Such a tool pro‐
vides advantages by:

• Saving you time and trouble by automating an important step
(in this case, running tests).

• Ensuring that tests are run every time they’re needed, thus elim‐
inating the potential error of forgetting to run the tests.

• Encouraging a disciplined approach to development and roll-
out. For instance, knowing that test suites will run reliably,
developers will be more likely to write tests. Furthermore, they
will standardize error reporting so that the automated tools can
determine what happens during the tests.

AirFlow, created at Airbnb and now maintained as a free software
project by the Apache Foundation, is a popular orchestration tool in
many development shops (not just among data engineers) because it
has a rich user interface, lets you define workflows using the popular
Python language syntax, and contains many useful hooks. For
instance, one hook lets you send email to an administrator to report
events such as errors during test runs.

Other scheduling tools exist, but they are less popular at the
moment. For example, the Apache Software Foundation offers a
workflow tool called Oozie, aimed narrowly at Hadoop and related
tools. Furthermore, Oozie is programmed in Java with configuration
files in XML, which are more complex than the Python syntax used
by AirFlow. AirFlow uses a rather complex syntax, Jinja templates, to
format messages for the user, but this is not a part of AirFlow’s core
features.

Both Oozie and Airflow recognize time and can help you check
whether you are meeting your SLAs.

Example: SLA support in AirFlow
Here’s how SLA support might work in AirFlow. (We have moved
out of testing now and are deploying your tools live.) Suppose you
are taking in streaming data and divide the data into chunks called
windows as it comes in, starting a new window every five minutes.
You want to deliver all the data you received during a five-minute
window and start a new task to retrieve the next window. Thus, you
can check the time a task starts and ensure that it starts when the
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previous task finished. You can also check whether the process stor‐
ing the data finishes within five minutes so that a new process can
start the next window. AirFlow will write an error to a log for each
missed SLA, and you can review the logs at regular times or run
another process regularly to count how many SLAs were missed.

Some other important features of AirFlow include:

• Parallel tasks, which can be managed through pools of tasks
similar to the old typing pools of twentieth-century business
offices.

• Alternative tasks. For instance, the SLA logging procedure pre‐
viously mentioned runs a logging process to emit an error mes‐
sage when an SLA is missed, but doesn’t run the logging process
if everything is fine. You can also choose among tasks and run
the appropriate task based on the outcome of another task.
Thanks to the use of Python, loops are also supported.

• Data exchange between tasks. They can send messages through
channels called XComs and also share data by setting and
retrieving variables. The user interface also allows an adminis‐
trator to create and manipulate variables that are read by the
tasks.

• Triggers and sensors to react to external events. Triggers
respond to the results of AirFlow tasks—for instance, a missed
SLA. Sensors respond to data from services outside AirFlow,
such as the web or HDFS.

• Support for running tasks within Docker and Kubernetes
containers.

Schedulers
Let’s take scheduling to a higher level. In our catering example, we
achieved the important assurance that waiters will take out the food
after the chefs cook it. But the facility needs an event planner to
make sure everything starts on time. The event planner remembers
that the Shah/Banerjee wedding starts at 6 PM, the retirement party
for Professor Dinaci at 7 PM, and so on. The event planner is
responsible for bringing in the staff to help with each event at the
right time. There are also repeating events: for instance, the cleaning
staff has to be called in at 9 PM each night. These are not workflow
issues and are best handled outside Airflow.
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One way to handle scheduling is through operating system schedu‐
lers, such as crontab on Linux and other Unix-like systems. More
sophisticated schedulers are provided as programming libraries,
such as Quartz in the Java language, and as part of analytics plat‐
forms such as Qubole Scheduler. AirFlow is particularly compatible
with a tool called Celery, which sets up task queues. Celery in turn
depends on other tools: a message broker such as RabbitMQ, and a
system called ZooKeeper for fault recovery.

Fault Tolerance and Checkpoints
It would be tedious to manually check whether every job finishes,
especially when the number of jobs runs into the thousands. Many
modern systems check automatically for jobs that fail or take too
long—it might be impossible to tell the difference because both vir‐
tual and physical machines sometimes fail silently—and restart jobs
as necessary.

As in database replication, a checkpoint or snapshot in streaming
data preserves a coherent view of the data at a particular point in
time, so that if a job fails you can pick up from a recent place instead
of repeating the whole job. For instance, in Spark or Spark
Streaming you issue the checkpoint call to set a checkpoint and can
restart a job from the most recent checkpoint.

Checkpoints require more state information in streaming than in
database replication, because many aggregate operations require
some knowledge of previously processed data. Checkpoints are
designed to hide the complexity of saved state and give program‐
mers a simple interface. The administrator configures whether old
data is saved or discarded, and whether the state information is
stored on the local node or to a distributed filesystem (which impo‐
ses more overhead but will preserve the state in case the local node
fails).

Conclusion
The evolving data engineering profession is less than two decades
old. While researching this report, I discovered a scarcity of online
information about the role. Although many popular tools can be
used productively in pursuit of data engineering, most current doc‐
umentation focuses on analytics instead of the storage and data
transformation tasks for which a data engineer is responsible. Thus,
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not only do you have to learn new skills to be a data engineer, but
you have to be creative in applying the advice handed out online.

Data engineering is also a hybrid responsibility. You probably will
need to handle both batch and streaming data, both data scientists
and business users (who exploit data in very different ways), both
SQL access and API access, and both on-premises and cloud stor‐
age. These split personalities don’t appear to be just transitional, but
a long-term feature of your work.

Many tasks of the DBA keep their importance in the age of big data.
The data engineer should understand schemas, provisioning and
scaling, and other basic concepts from the age of relational data‐
bases. You should be comfortable with traditional tools as well as
new ones.

The plethora of available tools and storage options also keeps evolv‐
ing, with last year’s champion being this year’s outcast. To serve your
users, you’ll be kept busy looking at new options as they come along.
You are not expected to become an expert at using every relevant
tool; different members of your team can specialize. And don’t take
every breathless blog posting seriously when someone claims to
have discovered a new solution or to have uncovered a fatal flaw in
some old solution. Very little is new under the sun, and if you
research the concepts behind a heralded new solution, you will
probably find that someone originally thought of it in the 1960s. In
particular, the moves from block to object storage and from rela‐
tional to NoSQL databases, in some respects, rewind computing
history.

I’ll finish, therefore, by reiterating that understanding your many
different users and your organization’s needs is critical. Get feedback
from users and their managers before you buy tools or transition to
a new environment, and at regular intervals thereafter. The right
data engineering solution is not necessarily the one getting a lot of
buzz, but the one that fits the data and goals of your organization.

Thanks go to our reviewers, particularly Matt Hogan of ManuLife/
John Hancock; Nicole Schwartz, product manager for Secure at
GitLab; Alex Gorelik, author of The Enterprise Big Data Lake
(O’Reilly); Veljko Krunic of Krunic Consulting, LLC; Simeon Schwarz,
director of data and analytics for OMS National Insurance; and Dr.
Hans Donker of Hans Donker Consultancy. Any errors should be
attributed to the author alone.
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APPENDIX

Best Practices for Managing
Resources

This report has laid out a dizzying platter of tools available for data
engineering, but until now has avoided the question of what com‐
puter systems to run the tools on. Like any computing operation,
you need physical resources in order to do ingestion and transfor‐
mations. Nearly everyone now schedules resources through either
containers or virtual machines (VMs), on-premises or in the cloud,
because they allow easy scaling and the efficient exploitation of
physical resources.

Containers and Virtual Machines
A container essentially runs a single application in an isolated envi‐
ronment, whereas a VM runs a whole operating system, hosting any
applications you want to include. Proponents of VMs claim they are
more secure than containers, although attacks against both have
been recorded. Containers are more lightweight and can spin up
faster.

Platform as a Service (PaaS) is another convenient cloud solution,
providing an API on which you can run your programming func‐
tions. PaaS makes resource management particularly easy for the
programmer, because the vendor handles all of the CPU and mem‐
ory resources behind the scenes.
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All the modern big data tools described in this report have interfaces
to popular tools for containers and VMs, both on-premises and
among cloud vendors. You need to hook up the tool of your choice
to the system of your choice, and specify how much CPU and mem‐
ory you need for each instance of the job you are running.

For containers, Docker and Kubernetes are the most popular
choices. Docker supports load balancing natively, directing all traffic
sent to your IP address to what it calls a swarm: a collection of con‐
tainers that you run on separate systems. Kubernetes lets you con‐
nect to an external load balancer for the same result. Both systems
handle failures by starting up new instances of your job.

VMware is the most popular VM solution for on-premises use,
although most sites that use VMs usually reserve them through a
third-party vendor. Nimbus is another open source tool that lets you
reserve multiple VMs for a job. It must be installed as an agent on
each VM, and is controlled by a central broker.

The process for managing resources varies for each process you
want to run (Kafka, Spark, etc.) and the container or VM tools you
choose. But essentially, processes that you create through Kafka,
Spark, or other tools are just like other processes that can be sched‐
uled on the container or VM.

To prevent a single point of failure, the server that controls the vari‐
ous worker processes should be replicated and monitored so that a
failure can be repaired by choosing a new server. A cloud service can
do this for you. If you run on-premises, you need another open
source tool, Zookeeper, to make sure central servers stay alive.

Along with configuring the resources available to containers and
VMs, you need to do other configurations such as assigning IP
addresses. Naturally, all the tools here offer a wealth of options and a
certain amount of orchestration (see “Orchestration” on page 46).

Finally, the network must be configured for high-speed data
exchange. This is a huge topic beyond the scope of this report,
encompassing such varied disciplines as router hardware choices,
routing protocols, and virtual networking.
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Operating System Support
Microsoft Windows has been the operating system of choice for
most businesses and other organizations for decades, although Unix
made inroads during the 1980s. The stabilization of GNU/Linux in
the 1990s brought a Unix-style operating system back into the
mainstream. All of the big data tools discussed in this report were
created by organizations firmly embedded in the world of Linux as
well as other free and open source software.

So if you work with the tools in this report, you are likely to end up
on Linux systems and will need to get to know them well. Some of
the tools release versions for other operating systems, but these
should be considered ports of the original Linux version. They prob‐
ably have not been tested as well as the Linux versions and probably
will suffer from bugs and oddities.
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