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Foreword

Today, we are rapidly moving from the information age to the age of
intelligence. Artificial intelligence (AI) is quickly transforming our
day-to-day lives. This age is powered by data. Any business that
wants to thrive in this age has no choice but to embrace data. It has
no choice but to develop the ability and agility to harness data for a
wide variety of uses. This need has led to the emergence of data
lakes.

A data lake is generally created without a specific purpose in mind.
It includes all source data, unstructured and semi-structured, from a
wide variety of data sources, which makes it much more flexible in
its potential use cases. Data lakes are usually built on low-cost com‐
modity hardware, which makes it economically viable to store tera‐
bytes or even petabytes of data.

In my opinion, the true potential of data lakes can be harnessed only
through the cloud—this is why we founded Qubole in 2011. This
opinion is finally being widely shared around the globe. Today, we
are seeing businesses choose the cloud as the preferred home for
their data lakes.

Although most initial data lakes were created on-premises, move‐
ment to the cloud is accelerating. In fact, the cloud market for data
lakes is growing two to three times faster than the on-premises data
lake market. According to a 2018 survey by Qubole and Dimen‐
sional Research, 73% of businesses are now performing their big
data processing in the cloud, up from 58% in 2017. The shift toward
the cloud is needed in part due to the ever-growing volume and
diversity of data that companies are dealing with; for example, 44%
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of organizations now report working with massive data lakes that
are more than 100 terabytes in size.

Adoption of the cloud as the preferred infrastructure for building
data lakes is being driven both by businesses that are new to data
lakes and adopting the cloud for the first time as well as by organiza‐
tions that had built data lakes on-premises, but now want to move
their infrastructures to the cloud.

The case for building a data lake has been accepted for some years
now, but why the cloud? There are three reasons for this.

First is agility. The cloud is elastic, whereas on-premises datacenters
are resource-constrained. The cloud has virtually limitless resources
and offers choices for adding compute and storage that are just an
API call away. On the other hand, on-premises datacenters are
always constrained by the physical resources: servers, storage, and
networking.

Think about it: data lakes must support the ever-growing needs of
organizations for data and new types of analyses. As a result, data
lakes drive demand for compute and storage that is difficult to pre‐
dict. The elasticity of the cloud provides a perfect infrastructure to
support data lakes—more so than any on-premises datacenter.

The second reason why more data lakes are being created on the
cloud than in on-premises datacenters is innovation. Most next-
generation data-driven products and software are being built in the
cloud—especially advanced products built around AI and machine
learning. Because these products reside in the cloud, their data stays
in the cloud. And because the data is in the cloud, data lakes are
being deployed in the cloud. Thus, the notion of “data gravity”—that
bodies of data will attract applications, services, and other data, and
the larger the amount of data, the more applications, services, and
other data will be attracted to it—is now working in favor of the
cloud versus on-premises datacenters.

The third reason for the movement to the cloud is economies of
scale. The market seems to finally realize that economics in the
cloud are much more favorable when compared to on-premises
infrastructures. As the cloud infrastructure industry becomes
increasingly competitive, we’re seeing better pricing. Even more fun‐
damentally, the rise of cloud-native big data platforms is taking
advantage of the cloud’s elasticity to drive heavily efficient usage of
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infrastructure through automation. This leads to better economics
than on-premises data lakes, which are not nearly as efficient in how
they use infrastructure.

If you combine all of these things together, you see that an on-
premises infrastructure not only impedes agility, but also is an
expensive choice. A cloud-based data lake, on the other hand, ena‐
bles you to operationalize the data lakes at enterprise scale and at a
fraction of the cost, all while taking advantage of the latest innova‐
tions.

Businesses follow one of two different strategies when building or
moving their data lake in the cloud. One strategy is to use a cloud-
native platform like Qubole, Amazon Web Services Elastic Map‐
Reduce, Microsoft Azure HDInsight, or Google Dataproc. The other
is to try to build it themselves using open source software or
through commercially supported open source distributions like
Cloudera and buy or rent server capacity.

The second strategy is fraught with failures. This is because compa‐
nies that follow that route aren’t able to take advantage of all the
automation that cloud-native platforms provide. Firms tend to blow
through their budgets or fail to establish a stable and strong infra‐
structure.

In 2017, I published a book titled Creating a Data-Driven Enterprise
with DataOps that talked about the need to create a DataOps culture
before beginning your big data journey to the cloud. That book
addressed the technological, organizational, and process aspects of
creating a data-driven enterprise. A chapter in that book also put
forth a case of why the cloud is the right infrastructure for building
data lakes.

Today, my colleagues are continuing to explore the value of the
cloud infrastructure. This book, written by cloud data lake experts
Holden Ackerman and Jon King, takes that case forward and
presents a more in-depth look at how to build data lakes on the
cloud. I know that you’ll find it useful.

— Ashish Thusoo
Cofounder and CEO, Qubole

May 2019
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Introduction

Overview: Big Data’s Big Journey to the Cloud
It all started with the data. There was too much of it. Too much to
process in a timely manner. Too much to analyze. Too much to store
cost effectively. Too much to protect. And yet the data kept coming.
Something had to give.

We generate 2.5 quintillion bytes of data each day (one quintillion is
one thousand quadrillion, which is one thousand trillion). A NASA
mathematician puts it like this: “1 million seconds is about 11.5
days, 1 billion seconds is about 32 years, while a trillion seconds is
equal to 32,000 years.” This would mean one quadrillion seconds is
32 billion years—and 2.5 quintillion would be 2,500 times that.

After you’ve tried to visualize that—you can’t, it’s not humanly pos‐
sible—keep in mind that 90% of all the data in the world was created
in just the past two years.

Despite these staggering numbers, organizations are beginning to
harness the value of what is now called big data.

Almost half of respondents to a recent McKinsey Analytics study,
Analytics Comes of Age, say big data has “fundamentally changed”
their business practices. According to NewVantage Partners, big
data is delivering the most value to enterprises by cutting expenses
(49.2%) and creating new avenues for innovation and disruption
(44.3%). Almost 7 in 10 companies (69.4%) have begun using big
data to create data-driven cultures, with 27.9% reporting positive
results, as illustrated in Figure I-1.
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Figure I-1. The benefits of deploying big data

Overall, 27% of those surveyed indicate their big data projects are
already profitable, and 45% indicate they’re at a break-even stage.

What’s more, the majority of big data projects these days are being
deployed in the cloud. Big data stored in the cloud will reach 403
exabytes by 2021, up almost eight-fold from the 25 exabytes that was
stored in 2016. Big data alone will represent 30% of data stored in
datacenters by 2021, up from 18% in 2016.

My Journey to a Data Lake
The journey to a data lake is different for everyone. For me, Jon
King, it was the realization that I was already on the road to imple‐
menting a data lake architecture. My company at the time was run‐
ning a data warehouse architecture that housed a subset of data
coming from our hundreds of MySQL servers. We began by extract‐
ing our MySQL tables to comma-separated values (CSV) format on
our NetApp Filers and then loading those into the data warehouse.
This data was used for business reports and ad hoc questions.

As the company grew, so did the platform. The amount, complexity,
and—most important—the types of data also increased. In addition
to our usual CSV-to-warehouse extract, transform, and load (ETL)
conversions, we were soon ingesting billions of complex JSON-
formatted events daily. Converting these JSON events to a relational
database management system (RDBMS) format required signifi‐
cantly more ETL resources, and the schemas were always evolving
based on new product releases. It was soon apparent that our data
warehouse wasn’t going to keep up with our product roadmap. Stor‐
age and compute limitations meant that we were having to con‐
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stantly decide what data we could and could not keep in the
warehouse, and schema evolutions meant that we were frequently
taking long maintenance outages.

At this point, we began to look at new distributed architectures that
could meet the demands of our product roadmap. After looking at
several open source and commercial options, we found Apache
Hadoop and Hive. The nature of the Hadoop Distributed File Sys‐
tem (HDFS) and Hive’s schema-on-read enabled us to address our
need for tabular data as well as our need to parse and analyze com‐
plex JSON objects and store more data than we could in the data
warehouse. The ability to use Hive to dynamically parse a JSON
object allowed us to meet the demands of the analytics organization.

Thus, we had a cloud data lake, which was based in Amazon Web
Services (AWS). But soon thereafter, we found ourselves growing at
a much faster rate, and realized that we needed a platform to help us
manage the new open source tools and technologies that could han‐
dle these vast data volumes with the elasticity of the cloud while also
controlling cost overruns. That led us to Qubole’s cloud data plat‐
form—and my journey became much more interesting.

A Quick History Lesson on Big Data
To understand how we got here, let’s look at Figure I-2, which pro‐
vides a retrospective on how the big data universe developed.

Figure I-2. The evolution of big data
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Even now, the big data ecosystem is still under construction.
Advancement typically begins with an innovation by a pioneering
organization (a Facebook, Google, eBay, Uber, or the like), an inno‐
vation created to address a specific challenge that a business
encounters in storing, processing, analyzing, or managing its data.
Typically, the intellectual property (IP) is eventually open sourced by
its creator. Commercialization of the innovation almost inevitably
follows.

A significant early milestone in the development of a big data eco‐
system was a 2004 whitepaper from Google. Titled “MapReduce:
Simplified Data Processing on Large Clusters,” it detailed how Goo‐
gle performed distributed information processing with a new engine
and resource manager called MapReduce.

Struggling with the huge volumes of data it was generating, Google
had distributed computations across thousands of machines so that
it could finish calculations in time for the results to be useful. The
paper addressed issues such as how to parallelize the computation,
distribute the data, and handle failures.

Google called it MapReduce because you first use a map() function
to process a key and generate a set of intermediate keys. Then, you
use a reduce() function that merges all intermediate values that are
associated with the same intermediate key, as demonstrated in
Figure I-3

Figure I-3. How MapReduce works

xvi | Introduction

http://bit.ly/12c3Ifq
http://bit.ly/12c3Ifq


A year after Google published its whitepaper, Doug Cutting of
Yahoo combined MapReduce with an open source web search
engine called Nutch that had emerged from the Lucene Project (also
open source). Cutting realized that MapReduce could solve the stor‐
age challenge for the very large files generated as part of Apache
Nutch’s web-crawling and indexing processes.

By early 2005, developers had a working MapReduce implementa‐
tion in Nutch, and by the middle of that year, most of the Nutch
algorithms had been ported using MapReduce. In February 2006,
the team moved out of Nutch completely to found an independent
subproject of Lucene. They called this project Hadoop, named for a
toy stuffed elephant that had belonged to Cutting’s then-five-year-
old son.

Hadoop became the go-to framework for large-scale, data-intensive
deployments. Today, Hadoop has evolved far beyond its beginnings
in web indexing and is now used to tackle a huge variety of tasks
across multiple industries.

“The block of time between 2004 and 2007 were the truly formative
years,” says Pradeep Reddy, a solutions architect at Qubole, who has
been working with big data systems for more than a decade. “There
was really no notion of big data before then.”

The Second Phase of Big Data Development
Between 2007 and 2011, a significant number of big data companies
—including Cloudera and MapR—were founded in what would be
the second major phase of big data development. “And what they
essentially did was take the open source Hadoop code and commer‐
cialize it,” says Reddy. “By creating nice management frameworks
around basic Hadoop, they were the first to offer commercial flavors
that would accelerate deployment of Hadoop in the enterprise.”

So, what was driving all this big data activity? Companies attempting
to deal with the masses of data pouring in realized that they needed
faster time to insight. Businesses themselves needed to be more agile
and support complex and increasingly digital business environ‐
ments that were highly dynamic. The concept of lean manufacturing
and just-in-time resources in the enterprise had arrived.

But there was a major problem, says Reddy: “Even as more commer‐
cial distributions of Hadoop and open source big data engines began
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to emerge, businesses were not benefiting from them, because they
were so difficult to us. All of them required specialized skills, and
few people other than data scientists had those skills.” In the O’Reilly
book Creating a Data-Driven Enterprise with DataOps, Ashish Thu‐
soo, cofounder and CEO of Qubole, describes how he and Qubole
cofounder Joydeep Sen Sarma together addressed this problem
while working at Facebook:

I joined Facebook in August 2007 as part of the data team. It was a
new group, set up in the traditional way for that time. The data
infrastructure team supported a small group of data professionals
who were called upon whenever anyone needed to access or ana‐
lyze data located in a traditional data warehouse. As was typical in
those days, anyone in the company who wanted to get data beyond
some small and curated summaries stored in the data warehouse
had to come to the data team and make a request. Our data team
was excellent, but it could only work so fast: it was a clear bottle‐
neck.
I was delighted to find a former classmate from my undergraduate
days at the Indian Institute of Technology already at Facebook. Joy‐
deep Sen Sarma had been hired just a month previously. Our team’s
charter was simple: to make Facebook’s rich trove of data more
available.
Our initial challenge was that we had a nonscalable infrastructure
that had hit its limits. So, our first step was to experiment with
Hadoop. Joydeep created the first Hadoop cluster at Facebook and
the first set of jobs, populating the first datasets to be consumed by
other engineers—application logs collected using Scribe and appli‐
cation data stored in MySQL.
But Hadoop wasn’t (and still isn’t) particularly user friendly, even
for engineers. It was, and is, a challenging environment. We found
that the productivity of our engineers suffered. The bottleneck of
data requests persisted. [See Figure I-4.]
SQL, on the other hand, was widely used by both engineers and
analysts, and was powerful enough for most analytics requirements.
So Joydeep and I decided to make the programmability of Hadoop
available to everyone. Our idea: to create a SQL-based declarative
language that would allow engineers to plug in their own scripts
and programs when SQL wasn’t adequate. In addition, it was built
to store all of the metadata about Hadoop-based datasets in one
place. This latter feature was important because it turned out indis‐
pensable for creating the data-driven company that Facebook sub‐
sequently became. That language, of course, was Hive, and the rest
is history.
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Figure I-4. Human bottlenecks for democratizing data

Says Thusoo today: “Data was clearly too important to be left behind
lock and key, accessible only by data engineers. We needed to
democratize data across the company—beyond engineering and IT.”

Then another innovation appeared: Spark. Spark was originally
developed because though memory was becoming cheaper, there
was no single engine that could handle both real-time and batch-
advanced analytics. Engines such as MapReduce were built specifi‐
cally for batch processing and Java programming, and they weren’t
always user-friendly tools for anyone other than data specialists such
as analysts and data scientists. Researchers at the University of Cali‐
fornia at Berkeley’s AMPLab asked: is there a way to leverage mem‐
ory to make big data processing faster?

Spark is a general-purpose, distributed data-processing engine suit‐
able for use in a wide range of applications. On top of the Spark core
data-processing engine lay libraries for SQL, machine learning,
graph computation, and stream processing, all of which can be used
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together in an application. Programming languages supported by
Spark include Java, Python, Scala, and R.

Big data practitioners began integrating Spark into their applications
to rapidly query, analyze, and transform large amounts of data.
Tasks most frequently associated with Spark include ETL and SQL
batch jobs across large datasets; processing of streaming data from
sensors, Internet of Things (IoT), or financial systems; and machine
learning.

In 2010, AMPLab donated the Spark codebase to the Apache Soft‐
ware Foundation, and it became open source. Businesses rapidly
began adopting it.

Then, in 2013, Facebook launched another open source engine,
Presto. Presto started as a project at Facebook to run interactive ana‐
lytic queries against a 300 PB data warehouse. It was built on large
Hadoop and HDFS-based clusters.

Prior to building Presto, Facebook had been using Hive. Says Reddy,
“However, Hive wasn’t optimized for fast performance needed in
interactive queries, and Facebook needed something that could
operate at the petabyte scale.”

In November 2013, Facebook open sourced Presto on its own (ver‐
sus licensing with Apache or MIT) with Apache, and made it avail‐
able for anyone to download. Today, Presto is a popular engine for
large scale, running interactive SQL queries on semi-structured and
structured data. Presto shines on the compute side, where many data
warehouses can’t scale out, thanks to its in-memory engine’s ability
to handle massive data volume and query concurrency Hadoop.

Facebook’s Presto implementation is used today by more than a
thousand of its employees, who together run more than 30,000
queries and process more than one petabyte of data daily. The com‐
pany has moved a number of their large-scale Hive batch workloads
into Presto as a result of performance improvements. “[Most] ad
hoc queries, before Presto was released, took too much time,” says
Reddy. “Someone would hit query and have time to eat their break‐
fast before getting results. With Presto you get subsecond results.”

“Another interesting trend we’re seeing is machine learning and
deep learning being applied to big data in the cloud,” says Reddy.
“The field of artificial intelligence had of course existed for a long
time, but beginning in 2015, there was a lot of open source invest‐
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ments happening around it, enabling machine learning in Spark for
distributed computing.” The open source community also made sig‐
nificant investments in innovative frameworks like TensorFlow,
CNTK, PyTorch, Theano, MXNET, and Keras.

During the Deep Learning Summit at AWS re:Invent 2017, AI and
deep learning pioneer Terrence Sejnowski notably said, “Whoever
has more data wins.” He was summing up what many people now
regard as a universal truth: machine learning requires big data to
work. Without large, well-maintained training sets, machine learn‐
ing algorithms—especially deep learning algorithms—fall short of
their potential.

But despite the recent increase in applying deep learning algorithms
to real-world challenges, there hasn’t been a corresponding upswell
of innovation in this field. Although new “bleeding edge” algorithms
have been released—most recently Geoffrey Hinton’s milestone cap‐
sule networks—most deep learning algorithms are actually decades
old. What’s truly driving these new applications of AI and machine
learning isn’t new algorithms, but bigger data. As Moore’s law pre‐
dicts, data scientists now have incredible compute and storage capa‐
bilities that today allow them to make use of the massive amounts of
data being collected.

Weather Update: Clouds Ahead
Within a year of Hadoop’s introduction, another important—at the
time seemingly unrelated—event occurred. Amazon launched AWS
in 2006. Of course, the cloud had been around for a while. Project
MAC, begun by the Defense Advanced Research Projects Agency
(DARPA) in 1963, was arguably the first primitive instance of a
cloud, “but Amazon’s move turned out to be critical for advance‐
ment of a big data ecosystem for enterprises,” says Reddy.

Google, naturally, wasn’t far behind. According to “An Annotated
History of Google’s Cloud Platform,” in April 2008, App Engine
launched for 20,000 developers as a tool to run web applications on
Google’s infrastructure. Applications had to be written in Python
and were limited to 500 MB of storage, 200 million megacycles of
CPU, and 10 GB bandwidth per day. In May 2008, Google opened
signups to all developers. The service was an immediate hit.
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Microsoft tried to catch up with Google and Amazon by announc‐
ing Azure Cloud, codenamed Red Dog, also in 2008. But it would
take years for Microsoft to get it out the door. Today, however,
Microsoft Azure is growing quickly. It currently has 29.4% of appli‐
cation workloads in the public cloud, according to a recent Cloud
Security Alliance (CSA) report. That being said, AWS continues to
be the most popular, with 41.5% of application workloads. Google
trails far behind, with just 3% of the installed base. However, the
market is still considered immature and continues to develop as new
cloud providers enter. Stay tuned; there is still room for others such
as IBM, Alibaba, and Oracle to seize market share, but the window
is beginning to close.

Bringing Big Data and Cloud Together
Another major event that happened around the time of the second
phase of big data development is that Amazon launched the first
cloud distribution of Hadoop by offering the framework in its AWS
cloud ecosystem. Amazon Elastic MapReduce (EMR) is a web ser‐
vice that uses Hadoop to process vast amounts of data in the cloud.
“And from the very beginning, Amazon offered Hadoop and Hive,”
says Reddy. He adds that though Amazon also began offering Spark
and other big data engines, “2010 is the birth of a cloud-native
Hadoop distribution—a very important timeline event.”

Commercial Cloud Distributions: The
Formative Years
Reddy calls 2011–2015 the “formative” years of commercial cloud
Hadoop platforms. He adds that, “within this period, we saw the
revolutionary idea of separating storage and compute emerge.”

Qubole’s founders came from Facebook, where they were the crea‐
tors of Apache Hive and the key architects of Facebook’s internal
data platforms. In 2011, when they founded Qubole, they set out on
a mission to create a cloud-agnostic, cloud-native big data distribu‐
tion platform to replicate their success at Facebook in the cloud. In
doing so, they pioneered a new market.

Through the choice of engines, tools, and technologies, Qubole
caters to users with diverse skillsets and enables a wide spectrum of
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big data use cases like ETL, data prep and ingestion, business intelli‐
gence (BI), and advanced analytics with machine learning and AI.

Qubole incorporated in 2011, founded on the belief that big data
analytics workloads belong in the cloud. Its platform brings all the
benefits of the cloud to a broader range of users. Indeed, Thusoo
and Sarma started Qubole to “bring the template for hypergrowth
companies like Facebook and Google to the enterprise.”

“We asked companies what was holding them back from using
machine learning to do advanced analytics. They said, ‘We have no
expertise and no platform,’” Thusoo said in a 2018 interview with
Forbes. “We delivered a cloud-based unified platform that runs on
AWS, Microsoft Azure, and Oracle Cloud.” During this same period
of evolution, Facebook’s open sourced Presto enabled fast business
intelligence on top of Hadoop. Presto is meant to deliver accelerated
access to the data for interactive analytics queries.

2011 also saw the founding of another commercial on-premises dis‐
tribution platform: Hortonworks. Microsoft Azure later teamed up
with Hortonworks to repackage Hortonworks Data Platform (HDP)
and in 2012 released its cloud big data distribution for Azure under
the name HDInsight.

OSS Monopolies? Not in the Cloud
An interesting controversy has arisen in the intersection between
the open source software (OSS) and cloud worlds, as captured in an
article by Qubole cofounder Joydeep Sen Sarma. Specifically, the
AWS launch of Kafka as a managed service seems to have finally
brought the friction between OSS and cloud vendors out into the
open. Although many in the industry seem to view AWS as the vil‐
lain, Sarma disagrees. He points out that open source started as a
way to share knowledge and build upon it collectively, which he
calls “a noble goal.” Then, open source became an alternative to
standards-based technology—particularly in the big data space.
This led to an interesting phenomenon: the rise of the open source
monopoly. OSS thus became a business model. “OSS vendors hired
out most of the project committers and became de facto owners of
their projects,” wrote Sarma, adding that of course venture capital‐
ists pounced; why wouldn’t they enjoy the monopolies that such
arrangements enabled? But cloud vendors soon caught up. AWS in
particular crushed the venture capitalists’ dreams. No one does
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commodity and Software as a Service (SaaS) better than AWS. Tak‐
ing code and converting it into a low-cost web service is an art form
at which AWS excels. To say that OSS vendors were not pleased is
an understatement. They began trying to get in the way of AWS and
other cloud platform vendors. But customers (businesses in this
case) do better when competition exists. As software consumption
increasingly goes to SaaS, we need the competition that AWS and
others provide. Wrote Sarma, “Delivering highly reliable web serv‐
ices and fantastic vertically integrated product experiences online is
a different specialty than spawning a successful OSS project and
fostering a great community.” He sees no reason why success in the
latter should automatically extend to a monopoly in the former.
Success must be earned in both markets.

As previously mentioned, in 2012 Microsoft released HDInsight, its
first commercial cloud distribution. Then in 2013, another big data
platform provider, Databricks, was launched. Founded by the crea‐
tors of Apache Spark, Databricks aims to help clients with cloud-
based big data processing. This marked the beginning of a new era
of “born-in-the-cloud” SaaS companies that were aligned perfectly
with the operational agility and pricing structure of the cloud.

Big Data and AI Move Decisively to the Cloud,
but Operationalizing Initiatives Lag
Since 2015, big data has steadily moved to the cloud. The most pop‐
ular open source projects (Apache Kafka, ElasticSearch, Presto,
Apache Hadoop, Spark, and many others) all have operators built
for various cloud commodities (such as storage and compute) and
managed services (such as databases, monitoring apps, and more).
These open source communities (largely comprising other enter‐
prise practitioners) are also using the cloud in their workplaces, and
we’re seeing some extraordinary contributions going into these
projects from developers worldwide.

“We’ve seen a lot of enterprise companies moving away from on-
premises deployments because of the pain of hitting the wall in
terms of capacity,” says Reddy, adding that, with the cloud, the
notion of multitenancy (or sharing a cluster across many users)
came full circle. In the cloud, “it’s all about creating clusters for spe‐
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cific use cases, and right-sizing them to get the most out of them,”
says Reddy.

Back when Hadoop was in its infancy, Yahoo began building
Hadoop on-demand clusters—dedicated clusters of Hadoop that
lacked multitenancy. Yahoo would bring these clusters up for dedi‐
cated tasks, perform necessary big data operations, and then tear
them down.

But since then, most of the advancements around Hadoop have
been focused around multitenant capabilities. The YARN (yet
another resource negotiator) project was chartered with this as one
of its main objectives. YARN delivered and helped Hadoop plat‐
forms expand in the enterprises that adopted it early. But there was a
problem. The velocity and volume of data was increasing at such an
exponential rate that all these enterprises that implemented big data
on-premises would soon hit the ceiling in terms of capacity. They’d
require multiple hardware refreshes to meet the demand for data
processing. Multitenancy on-premises also requires a lot of adminis‐
tration time to manage fair share across the different users and
workloads.

Today, in the cloud, we see Hadoop on-demand clusters similar to
those we saw when Hadoop was in its infancy. As Reddy said, the
focus is more about right-sizing the clusters for specific uses rather
than enabling multitenancy. Multitenancy is still very relevant in the
cloud for Presto, although not as much for Hive and Spark clusters.

At the present time, cloud deployments of big data represent as
much as 57% of all big data workloads, according to Gartner. And
global spending on big data solutions via cloud subscriptions will
grow almost 7.5 times faster than those on-premises, says Forrester,
which found that moving to the public cloud was the number-one
technology priority for big data practitioners, according to its 2017
survey of data analytics professionals (see Figure I-5).
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Figure I-5. Growth of big data solutions

This represents just the foundational years of machine learning and
deep learning, stresses Reddy. “There is a lot more to come.”

By 2030, applying AI technologies such as machine learning and
deep learning to big data deployments will be a $15.7 trillion “game
changer,” according to PwC. Also, 59% of executives say their com‐
panies’ ability to leverage big data will be significantly enhanced by
applying AI.

Indeed, big data and AI are becoming inexorably intertwined. A
number of recent industry surveys have unanimously agreed that
from the top down, companies are ramping up their investment in
advanced analytics as a key priority of this decade. In NewVantage
Partners’ annual executive survey, an overwhelming 97.2% of execu‐
tives report that their companies are investing in building or launch‐
ing combined big data and AI initiatives. And 76.5% said the
proliferation of data is empowering AI and cognitive computing ini‐
tiatives.

One reason for the quick marriage of big data and AI on the cloud is
that most companies surveyed were worried that they would be
“disrupted” by new market entrants.

AI and Big Data: A Disruptive Force for Good
The technology judged most disruptive today is AI. A full 72% of
executives in the NewVantage survey chose it as the disruptive tech‐
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nology with the most impact. And 73% said they have already
received measurable value from their big data and AI projects.

But they also reported having trouble deploying these technologies.
When executives were asked to rate their companies’ ability to oper‐
ationalize big data—that is, make it a key part of a data-driven orga‐
nization—the results were somewhat mixed, according to Forrester.
Few have achieved all of their goals, as shown in Figure I-6.

Figure I-6. Few companies have managed to operationalize their AI
and big data initiatives

And a global survey by Gartner indicated that the overwhelming
majority—91%—of businesses have yet to achieve a “transforma‐
tional” level of maturity in big data, despite such activities being a
number one investment priority for CIOs recently.

In this survey, Gartner asked organizations to rate themselves based
on Gartner’s big data maturity model—ranging from Level 1 (basic)
to Level 2 (opportunistic) to Level 3 (systematic) to Level 4 (differ‐
entiating), and to Level 5 (transformational)—and found that 60%
placed themselves in the lowest three levels.

We Believe in the Cloud for Big Data and AI
The premise of this book is that by taking advantage of the compute
power and scalability of the cloud and the right open source big data
and AI engines and tools, businesses can finally operationalize their
big data. This will allow them to be more innovative and collabora‐
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tive, achieving analytical value in less time while lowering opera‐
tional costs. The ultimate result: businesses will achieve their goals
faster and more effectively while accelerating time to market
through intelligent use of data.

This book is designed not to be a tow rope, but a guiding line for all
members of the data team—from data engineers to data scientists to
machine learning engineers to analysts—to help them understand
how to operationalize big data and machine learning in the cloud.

Following is a snapshot of what you will learn in this book:

Chapter 1
You learn why you need a “central repository” to be able to use
your data effectively. In short, you’ll learn why you need a data
lake.

Chapter 2
You need a data-driven culture, but it can be challenging to get
there. This chapter explains how.

Chapter 3
We show you how to begin to build a data lake.

Chapter 4
We discuss building the infrastructure for the data lake. What
kind of structure do you need to house your big data?

Chapter 5
Now that you’ve built the “house” for your data lake, you need
to consider governance. In this chapter, we cover three neces‐
sary governance plans: data, financial, and security.

Chapter 6
You’ll need some tools to manage your growing data lake. Here,
we provide a roundup of those tools.

Chapter 7
We examine three key considerations for securing a data lake in
the cloud.

Chapter 8
We discuss the role of data engineers, and how they interface
with a cloud-native data platform.

xxviii | Introduction



Chapter 9
We discuss the role of data scientists, and how they interface
with a cloud-native data platform.

Chapter 10
We discuss the role of data analysts, and how they interface with
a cloud-native data platform.

Chapter 11
We present a case study from Ibotta, which transitioned from a
static and rigid data warehouse to a cost-efficient, self-service
data lake using Qubole’s cloud-native data platform.

Chapter 12
We conclude by examining why a cloud data platform is a
future-proof approach to operationalizing your data lake.
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CHAPTER 1

The Data Lake:
A Central Repository

In the introduction, we examined how companies are beginning to
recognize the value of their data. Every business with information
systems essentially uses a data lake, whether it is a staging environ‐
ment for a data mart or a temporary storage layer for downstream
processes like loading data warehouses or delivering to core systems.

These businesses are attempting to “activate” the data—that is, put it
in the hands of the business users who need it—by taking advantage
of the power of data lakes to operationalize their information in a
way that can grow with the company.

These users almost immediately encounter several significant prob‐
lems. Different users or teams might not be using the same versions
of data. This happens when a dataset—for example, quarterly sales
data—is split into or distributed to different data marts or other
types of system silos in different departments. The data typically is
cleaned, formatted, or changed in some way to fit these different
types of users. Accounts payable and marketing departments may be
looking at different versions of sales results. Each department may
have their unconscious assumptions and biases that cause them to
use the data in different ways. And sometimes the data itself is
biased, which we look at more closely in the sidebar that follows.

1



The Four (Theoretical) Evils of Analytics
The four primary types of biases are information, confirmation,
interpretation, and prediction. One or more of these biases might
come into play during the data life cycle. Here are a few examples:

Information bias
This refers to bias regarding the origin of the data—the “when”
and “where.” For example, take flu statistics. Where is the data
coming from? Is the data coming in evenly from across the
world? Or is it skewed to a few countries or cities? Is the data
being collected in a standardized way?

Confirmation bias
This bias is probably the most common of the four. We, as
humans, subconsciously make inferences about data and look
for evidence to support those inferences. Data analysts must
understand their own biases, be ready to reexamine the data,
and put aside any preconceived notions or views.

Interpretation bias
This bias comes into play when framing the data for analysis.
Subtle stimuli in the framing of a question can change the bias
of the analysis. For example, take these two survey questions:
“What speed do you think the cars were going when they colli‐
ded?” versus “What speed do you think the cars were going
when they smashed?” By using a more violent word, smashed,
the second question tempts the survey subject to provide a
higher number, thus skewing the results.

Prediction bias
Attempting to predict future events from past ones is always
difficult. Relying too much on certain data inputs to make such
predictions runs the risk of allocating resources to an area
where they are not actually needed and thus wasted. To
decrease such biases, data must always be evaluated by a
human who can make the subtle differentiations that machines
are not yet capable of doing.

Companies commonly run into a “data whitespace” problem
because of unstructured data. This happens when you can’t see all of
your data. Traditional tools such as PostgreSQL, MySQL, and Oracle
are all good for storing and querying structured data. You also have
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unstructured data like log files, video files, and audio files that you
can’t fit into databases. You end up with data, but you can’t do any‐
thing with it. This leaves holes in your ability to “see” your business.

Enter the data lake. The idea behind a data lake is to have one place
where all company data resides. This raw data—which implies an
exact copy of data from whatever source it came from—is an
immutable record that a business can then utilize to transform data,
so that it can be used for reporting, visualization, analytics, machine
learning, and business insights.

What Is a Data Lake?
A data lake is a central repository that allows you to store all your
data—structured and unstructured—in volume, as shown in
Figure 1-1. Data typically is stored in a raw format (i.e., as is)
without first being structured. From there it can be scrubbed and
optimized for the purpose at hand, be it dashboards for interactive
analytics, downstream machine learning, or analytics applications.
Ultimately, the data lake enables your data team to work collectively
on the same information, which can be curated and secured for the
right team or operation.

Figure 1-1. What is a data lake?

Although this book is about building data lakes in the cloud, we can
also build them on-premises. However, as we delve further into the
topic, you will see why it makes sense to build your data lake in the
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cloud. (More on that in Chapter 3.) According to Ovum ICT Enter‐
prise Insights, 27.5% of big data workloads are currently running in
the cloud.

The beauty of a data lake is that everyone is looking at and operating
from the same data. Eliminating multiple sources of data and having
a referenceable “golden” dataset in the data lake leads to alignment
within the organization, because any other downstream repository
or technology used to access intelligence in your organization will
be synchronized. This is critical. With this centralized source of
data, you’re not pulling bits of data from disparate silos; everyone in
the organization has a single source of truth. This directly affects
strategic business operations, as everyone from the C-suite on down
is making important strategic decisions based upon a single, immut‐
able, data source.

Data Lakes and the Five Vs of Big Data
The ultimate goal of putting your data in a data lake is to reduce the
time it takes to move from storing raw data to retrieving actionable
and valuable information. But to reach that point, you need to have
an understanding of what big data is across your data team. You
need to understand the “five Vs” model of big data, as shown in
Figure 1-2. Otherwise, your data lake will be a mess—commonly
known as a data swamp.

Figure 1-2. The five Vs model of big data
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Big data, by definition, describes three different types of data: struc‐
tured, semi-structured, and unstructured. The complexity of the
resulting data infrastructure requires powerful management and
technological solutions to get value out of it.

Most data scientists define big data as having three key characteris‐
tics: volume, velocity, and variety. More recently, they’ve added two
other qualities: veracity and value. Let’s explore each in turn:

Volume
Big data is big; this is its most obvious characteristic. Every sec‐
ond, almost inconceivable amounts of data are generated from
financial transactions, ecommerce transactions, social media,
phones, cars, credit cards, sensors, video, and more. The data
has in fact become so vast that we can’t store or process it using
traditional databases. Instead, we need distributed systems in
which data is stored across many different machines—either
physical (real) or virtual—and managed as a whole by software.
IDC predicts that the “global datasphere” will grow from 33 zet‐
tabytes (ZB) in 2018 to 175 ZB by 2025. One ZB is approxi‐
mately equal to a thousand exabytes, a billion terabytes, or a
trillion gigabytes. Visualize this: if each terabyte were a kilome‐
ter, a ZB would be equivalent to 1,300 round trips to the moon.

Velocity
Next, there’s the velocity, or speed, of big data. Not only is the
volume huge, but the rate at which it is generated is blindingly
fast. Every minute, the Weather Channel receives 18 million
forecast requests, YouTube users watch 4.1 million videos, Goo‐
gle delivers results for 3.6 million searches, and Wikipedia users
publish 600 new edits. And that’s just the tip of the iceberg. Not
only must this data be analyzed, but access to the data must also
be instantaneous to allow for applications like real-time access
to websites, credit card verifications, and instant messaging. As
it has matured, big data technology has allowed us to analyze
extremely fast data even as it is generated, even without storing
it in a database.

Variety
Big data is made up of many different types of data. No longer
having the luxury of working with structured data that fits
cleanly into databases, spreadsheets, or tables, today’s data
teams work with semi-structured data such as XML, open-
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standing JSON, or NoSQL; or they must contend with com‐
pletely unstructured data such as emails, texts, and human-
generated documents such as word processing or presentation
documents, photos, videos, and social media updates. Most—
approximately 85%—of today’s data is unstructured. Previously,
this data was not considered usable. But modern big data tech‐
nologies have enabled all three types of data to be generated,
stored, analyzed, and consumed simultaneously, as illustrated in
Figure 1-3.

Figure 1-3. The variety of sources in big data deployments

Veracity
Veracity, the quality of the data, is a recent addition to the origi‐
nal three attributes of the big data definition. How accurate is
your data? Can you trust it? If not, analyzing large volumes of
data is not only a meaningless exercise, but alsoa dangerous one
given that inaccurate data can lead to wrong conclusions.
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Value
Finally, there’s the big question: what is the data worth? Gener‐
ating or collecting massive volumes of data is, again, pointless if
you cannot transform it into something of value. This is where
financial governance of big data comes in. Researchers have
found a clear link between data, insights, and profitability, but
businesses still need to be able to calculate the relative costs and
benefits of collecting, storing, analyzing, and retrieving the data
to make sure that it can ultimately be monetized in some way.

Data Lake Consumers and Operators
Big data stakeholders can be loosely categorized as either operators
or consumers. The consumer category can be further divided into
internal and external users. (We provide more granular definitions
of roles in the following section.) Both camps have different roles
and responsibilities in interacting with each of the five Vs.

Operators
Data operators include data engineers, data architects, and data and
infrastructure administrators. They are responsible for dealing with
the volume, velocity, variety, and veracity of the data. Thus they
must ensure that large amounts of information, no matter the speed,
arrive at the correct data stores and processes on time. They’re
responsible for ensuring that the data is clean and uncorrupted. In
addition, the operators define and enforce access policies—policies
that determine who has access to what data.

Indeed, ensuring veracity is probably the biggest challenge for oper‐
ators. If you can’t trust the data, the source of the data, or the pro‐
cesses you are using to identify which data is important, you have a
veracity problem. These errors can be caused by user entry errors,
redundancy, corruption, and myriad other factors. And one serious
problem with big data is that errors tend to snowball and become
worse over time. This is why an operator’s primary responsibility is
to catalog data to ensure the information is well governed but still
accessible to the right users.

In many on-premises data lakes, operators end up being the bottle‐
necks. After all, they’re the ones who must provision the infrastruc‐
ture, ingest the data, ensure that the correct governance processes
are in place, and otherwise make sure the foundational infrastruc‐
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ture and data engineering is robust. This can be a challenge, and
resources are often limited. Rarely is there is enough compute,
memory, storage—or even people—to adequately meet demand.

But in the cloud, with the scalability, elasticity, and tools that it
offers, operators have a much easier time managing and operation‐
alizing a data lake. They can allocate a budget and encourage con‐
sumers to figure things out for themselves. That’s because after a
company has placed the data in the data lake (the source of truth)
and created a platform that can easily acquire resources (compute),
project leaders can more effectively allocate a budget for the project.
After the budget is allocated, the teams are now empowered to
decide on and get the resources themselves and do the work within
the given project timeframe.

Consumers (Both Internal and External)
Consumers are the data scientists and data analysts, employee citi‐
zen scientists, managers, and executives, as well as external field
workers or even customers who are responsible for drawing conclu‐
sions about what’s in the data. They are responsible for finding the
value, the fifth V, in it. They also must deal with the volume of data
when it comes to the amount of information that they need to sift
through as well as the frequency of requests they get for ad hoc
reports and answers to specific queries. These teams are often also
working with a variety of unstructured and structured datasets to
create more usable information. They are the ones who analyze the
data produced by the operators to create valuable and actionable
insights. The consumers use the infrastructure managed by the
operators to do these analyses.

There are internal and external users of the data lake. Internal users
are those developing tools and recommendations for use within
your company. External users are outside your company; they want
limited access to data residing in the data lake. Google AdSense is an
example of this: Google is developing tools and insights for its inter‐
nal use at a global level. At the same time, it is developing portals for
external entities to gain insights into their advertising companies. If
I’m the Coca-Cola Company, for instance, I would want to know the
success rate of my ads targeting Pepsi users, and whether I can use
my advertising dollars better.
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Challenges in Operationalizing Data Lakes
In 2017, Gartner estimated that perhaps 60% of all big data projects
fail. That sounds grim; but the reality is worse. According to a Twit‐
ter post by Gartner analyst Nick Heudecker, Gartner was “too con‐
servative” with this estimate. Heudecker in 2018 estimated that the
real failure rate was “closer to 85%.” But the problem wasn’t a techni‐
cal one; it was because of the humans—the operators and consumers
—who were necessarily involved in the process.

McKinsey came to the same pessimistic conclusion. Though
research done by the McKinsey Global Institute (a sister organiza‐
tion) generated a lot of excitement by predicting that retailers using
big data and analytics could improve their operating margins by
more than 60%, when McKinsey recently gathered analytics leaders
from leading large enterprises and asked about the revenue or cost
benefits they’d received from big data, 75% said it had been less than
1%. Why was this?

Here are the three most common reasons why big data projects fail:

Shortage of resources and expertise
Data science jobs are already difficult to fill, and according to
The Quant Crunch report, demand is expected to rise 28% by
2020. Businesses eager to begin big data projects are often frus‐
trated by the lack of data science skills in their talent pool, as
depicted in Figure 1-4, and mistakes made by relative newbies
to big data can cause major setbacks.

Challenges in Operationalizing Data Lakes | 9

https://tek.io/2XwMpCy
https://tek.io/2XwMpCy
https://mck.co/2U7HrKo
https://pwc.to/2UbyRKv
https://ibm.co/2VAfKv3


Figure 1-4. Shortage of big data talent is very real

Costs are too high
Talent is not only scarce, it’s expensive. And many businesses
are dependent on third-party consulting firms to successfully
complete projects, which adds to the cost.

In addition, data lakes consume a lot of infrastructure (compute
and storage). If proper financial governance is not put in place,
companies risk incurring runaway infrastructure costs with no
visibility on their ROI.

At least part of the problem is that organizations don’t provide
sufficient resources to their big data projects. According to a
Qubole survey, a full 75% of companies identified a gap between
their big data resources and the potential value of the project(s),
as shown in Figure 1-5.
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Figure 1-5. The gap between big data needs and resources

Cloud-native platforms like Qubole intelligently optimize
resources, as demonstrated in Figure 1-6. They automatically
assign more capacity when needed and release resources when
workloads require less capacity by doing intelligent workload-
aware autoscaling. This is a huge game changer for organiza‐
tions that pay only for what they use rather than preemptively
ordering capacity and hiring teams to provision and maintain
that technology.
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Figure 1-6. How cloud-native big data platforms can intelligently opti‐
mize resources

It takes too long to realize value
Because of the relative newness of the technologies, coupled
with the difficulty of finding expertise, many big data projects
fail to deliver within expected timeframes, as shown in
Figure 1-7.

Given these challenges, should companies build a solution or buy
one? This question of “build or buy” inevitably comes up in a big
data project. It’s important to not conflate technical and business
issues when making this decision. When faced with a technical chal‐
lenge, don’t hesitate: buy your way out of it. If someone has already
created a solution, purchase it.

What we’ve seen is that most do-it-yourself projects return less-
than-expected value because the teams spend most (75%) of the
allocated time simply acquiring sufficient resources. This leaves less
than 25% of the project time to realize value from the data. Now
imagine a project timeline for which technology resources can be
acquired in minutes, leaving more than 90% of the project time‐
frame to find and acquire data. Being able to easily spin up an
engine provides faster iteration, and you’ll get answers to queries in
seconds versus minutes. Having the right platform and engine in a
matter of minutes means that projects are better positioned to find
significant value from data in less time.
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Figure 1-7. Concerns about big data time to value

The SaaS model also provides advantages over licensed distributions
for which you buy software by the node for a yearly license, because
the latter method is too fixed and outdated to keep up with data
growth or the speed of innovation.
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CHAPTER 2

The Importance of Building
a Self-Service Culture

Before we can talk about how to build a data lake, we need to discuss
the culture of the company using that data lake and, more specifi‐
cally, the mental shift required for organizations to fully embrace the
value of a data lake. In more traditional organizations, the DataOps
team stands between the data and the business users. Traditionally,
when a user needs data, they approach a data analyst or data scien‐
tist and make a request. The data team then responds. It’s common
for the data team to build dashboards and have a set of prebuilt
reports that it refreshes or sends out periodically, but so-called ad
hoc requests are usually handled on a case-by-case basis.

This gatekeeper approach inevitably causes bottlenecks, as shown in
Figure 2-1. Users who need data for a key presentation or to make a
strategic decision are forced to wait for their turns in the queue.
Often, they give up, and make the decision without having the data
to back it up. And it becomes difficult, if not impossible, for an orga‐
nization to extract the full value from its data using this paradigm.
Because of this, a self-service culture is essential if your company is
going to get the most value from your data and, eventually, become
a true data-driven organization.
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Figure 2-1. The importance of building a self-service culture

The End Goal: Becoming a Data-Driven
Organization
A data-driven business is one in which decisions are powered by
data as opposed to intuition or even personal experience. It’s one in
which people who tend to “think from their gut” are encouraged to
use hard empirical evidence to back up what they say and do. In a
data-driven company like Facebook, for example, no one would
think of showing up to an important meeting without quantifiable
facts to back up their position.

According to Forrester, data-driven companies grow eight times
faster than those that work from intuition or speculation. Insights-
driven businesses grow on average more than 30% annually and are
on track to earn $1.8 trillion by 2021.

Obviously, a first step toward being data driven is to make data
readily accessible to everyone in the organization—that is, to democ‐
ratize the data. And this means having a self-service data culture.

Numerous—if not most—companies today have announced their
intentions of becoming data driven. Many have already started
down this road. The basic premise has long been that deploying a
data warehouse, populating it with company data, and hiring a team
of intelligence analysts will lead in no time to data-driven nirvana.

But it’s not happening very quickly. Virtually all respondents to a
recent NewVantage survey said that their firms are trying to make
the shift, but only about a third have succeeded.
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A data-driven organization should possess three things, according
to Ashish Thusoo, cofounder and CEO of Qubole, as documented in
the O’Reilly book Creating a Data-Driven Enterprise with DataOps:

• A culture in which everyone buys into the idea of using data to
make business decisions

• An organizational structure that supports a data-driven culture
• Technology that makes data self-service

We are focusing on the last point in this book, but let’s go over all
three requirements nonetheless.

Foster a Culture of Data-Driven Decision Making
Whether you know it or not, your business already has a decision-
making culture. The problem is that your culture might not be
geared toward a data-driven approach. It might be ingrained in the
culture of your organization, like many others, that the “HIPPO”
(highest-paid person in the office) is the last stop in the decision-
making process, and the senior person in the meeting gets to make
the final choice. Unfortunately, the HIPPO can at times be very
wrong. But unless you have the data to use as evidence for your
arguments (and your company culture supports arguing with the
top brass in the organization), their decision usually stands.

To successfully become data driven, your employees should always
use data to start, continue, or conclude every single business deci‐
sion, no matter how major or minor.

You probably need to start the shift from the top. For example, many
marketing departments are becoming more data driven. A chief
marketing officer (CMO) can set the right tone by making it manda‐
tory to experiment with and test new creative initiatives and cam‐
paigns to gather data on their impact, as opposed to simply relying
on gut feeling and intuition. That message gives primacy to data,
and that sentiment then flows to the rest of the marketing team.

It’s important to understand that different employees within your
organization will have different reasons for buying into using data in
their day-to-day jobs. You first must identify who all of these stake‐
holders are. Then, you must understand what will motivate them to
begin using data to make decisions. And then you must make it easy
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for them to serve themselves, organizationally and technically, a
topic we address in the next two sections.

Build an Organizational Structure That Supports a Self-
Service Culture
Organizationally, how do you support a data-driven company? Most
successful data-driven entities have created a central data platform
team that publishes data and manages the necessary technical infra‐
structure. Although some organizations establish multiple data
teams and embed them in different departments, each catering to
the needs of that particular department, this is typically less useful if
you hope to get to data-driven nirvana because it ends up creating a
number of isolated data silos. Therefore, a strong, functional, central
data team is extremely important. As we discussed in Chapter 1, this
provides a single source of truth that underpins all data analyses.

Your next step is to embed business function–specific analysts
within each department, staff specially designated to help users in
that department extract value from your company’s data. This works
best because those analysts possess the domain-specific knowledge
about the business function—the marketing data analyst under‐
stands campaigns, and the finance data analyst understands
accounts payables—while also having intimate knowledge of the
data. They can convert the language of the data systems to the lan‐
guage of the business, as illustrated in Figure 2-2.

This is critical because the two languages are very different. The
business wants to ask questions such as the following:

• Which geographic regions of my business are the best to invest
in?

• What is the size of the market?
• Who is the competition?
• What are the best market opportunities today?

18 | Chapter 2: The Importance of Building a Self-Service Culture



Figure 2-2. The hub-and-spoke data organizational model

According to Thusoo, Facebook quickly understood that it needed a
centralized data team. Then, it embedded analysts in every product
team. “We also took care that all the analysts had a central forum at
which they could meet and communicate what they were doing,
allowing data intelligence to flow through the entire organization,”
he says.

Essentially, this model transmitted the data-driven DNA of the self-
service culture throughout the company. If any link in this “value
chain” of data is weak, you face barriers to developing a true data-
driven culture. Chief data officers usually carry the ultimate respon‐
sibility of nurturing and growing this value chain of data.

Putting a Self-Service Technological Infrastructure in
Place
All data-using employees must be supported by the central data
team if you hope to achieve self-service. This team is ultimately
responsible for maintaining the infrastructure. Their job is to deploy
whatever people, processes, and technologies are necessary to make
data available to everyone who needs it, on a self-service basis.
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In a recent survey by Qubole, 70% of organizations said a self-
service environment was either already in place or planned, as
shown in Figure 2-3.

Figure 2-3. Plans to build a self-service environment

By empowering users to explore data easily and with the tools
they’re comfortable with, data teams can keep staffing low and raise
the productivity and effectiveness of business users throughout the
organization. The key here is that data engineering teams need to be
able to automate the underlying infrastructure to be fully aligned
with key business initiatives. If they don’t do that, they’ll waste time
providing information to other data teams rather than doing infra‐
structure setup and maintenance.

You’ll know that your company is genuinely data driven when
“bottom-up” demand for self-service data access emerges. When
this happens, you must ensure that the tools and mechanisms are
there to support this bottom-up interest among employees. For
example, with self-service tools and processes in place, employees in
marketing could themselves find and analyze previous campaigns’
datasets—which are stored in the centralized data lake—to come up
with ideas for successful future campaigns and messaging.

Challenges of Building a Self-Service
Infrastructure
When it comes to creating a data-driven infrastructure that includes
a data lake, organizations most often face the following four chal‐
lenges:

20 | Chapter 2: The Importance of Building a Self-Service Culture

http://bit.ly/2WLewNZ


• Lack of specialized expertise
• The disparity and distribution of data
• Organizational resistance
• Reluctance to commit to open source

Let’s examine each of these a bit more closely.

Lack of Specialized Expertise
Building a data lake for truly big data requires specialized technolo‐
gies and skillsets. In fact, the primary big data challenge in the
Qubole survey was lack of experience, as shown in Figure 2-4.

Figure 2-4. Challenges faced by big data teams

The 80/20 rule appears to be true in the big data world, in which
only 20% of the technology workforce has adequate hands-on expe‐
rience building big data platforms that can scale as needed. This
raises urgent issues, because data in corporate data lakes is growing
year after year, as depicted in Figure 2-5.
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Figure 2-5. The growth of corporate data stores

During the initial exploratory phases, users might experiment with
data on their local laptops. This works for the short term because the
datasets don’t exceed the resource limits of their system. However, as
soon as data begins to grow, either in volume or complexity, the
physics required to process it begins to change. It requires more
compute resources to process. This is when organizations begin to
look at cluster computing engines like Hadoop, Hive, Spark, or
Presto, depending on the particular use case.

Also, most IT engineers only have experience with static, monolithic
applications that have fixed resources, not clusters and workloads,
which are more ephemeral.

The LinkedIn Workforce Report for US (August 2018) states that
“demand for data scientists is off the charts,” with data science skills
shortages present in almost every large US city, as demonstrated in
Figure 2-6.
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Figure 2-6. Job growth in big data space

Moreover, the technology in the big data space is still young and
thus constantly evolving. Though Spark was the most used frame‐
work in 2017, as Figure 2-7 highlights, Flink and Presto were catch‐
ing up with extraordinary market-share growth of 125% and 63%,
respectively.

Figure 2-7. Frameworks continually evolving
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Disparity and Distribution of Data
Next, the disparity of data is a challenge. The centralized data team
needs to be able to capture all of the data in the organization. But
the number of sources is mind-boggling—and growing every
month. Moreover, much of the data is siloed. You might need to find
and capture data from within different business applications, prod‐
uct applications, public and private customer interaction points,
monitoring systems, third-party data providers, and many other
sources.

Also, many enterprise data systems are primarily set up for opera‐
tional reasons. Collecting data from them is usually an afterthought.
The natural inclination of your business is probably not to go out of
its way to capture this data, much less expend the effort to consoli‐
date it in one place. Potentially valuable data from all of these sour‐
ces remains in silos. In the process, the organization loses many
opportunities to derive insights or discover optimizations by putting
data from different sources together.

Deciding to create a data lake can raise all sorts of questions:

• Where do I store the data?
• In what format should I store it?
• How long is that data useful?
• How do I make it easy for users to find data?
• Who has access to the data?
• What are our permission rights to the data?

The first step toward overcoming these challenges and answering
these questions is to take an inventory of all of your data sources
and create a company-wide data-capture infrastructure that lays out
the correct way to capture and log the data. Everyone in the organi‐
zation should adhere to those standards.

The next step is to consolidate all of the data in the centralized data
lake so that every data consumer in the organization knows where to
find it.
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Organizational Resistance
Change is difficult—especially a change as massive as moving to a
self-service, data-driven company.

The first step is to get the hub-and-spoke data organization in place
and ensure that it is aligned with the business requirements. This in
and of itself can prove challenging, and given how slowly companies
change—especially larger enterprises—it could take many weeks or
months.

Next, you need to ensure that you’ve put the right tools in place to
enable self-service for your users. Depending on how sophisticated
your users are, these tools can range from canned dashboards and
reports to ad hoc querying tools, all the way to fully customizable
data platforms. And you must stay on top of whether these tools are
actually being used—there’s no point in having them if no one pays
attention to them.

Your users’ level of data literacy—their ability to find, work with,
analyze, and argue using data—is critical to building a self-service,
data-driven culture. Airbnb serves as an example of what you can do
to improve enterprise-wide data literacy. Airbnb had a data literacy
problem, despite having built a centralized data lake and populated
it with massive datasets that the company thought would be useful
to employees in the 22 countries where it operates. At the beginning
of Q3 2016, only 30% of Airbnb employees used this data platform
at least once weekly.

To remedy this, Airbnb built its Data University, with the mission of
educating everyone in the company on how to use data effectively.
Engineers, product managers, designers—all employees, really—
were taught how to use data to unearth insights that would help
them make better decisions.

Data University proved a great success, and has transformed Air‐
bnb’s culture to one that is both self-service and data driven.
Employees learned how to handle ad hoc data requests themselves,
and within a year, 60% of them were using the Airbnb data platform
at least weekly to make data-driven decisions.

Finally, consider creating some internal centers of excellence around
big data analytics. Some of the best data-driven companies con‐
stantly reach out to various teams and ask, “How are you doing?
What are you using to solve problems?”
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You might have centers that are really good at Spark, whereas others
are really good at analyses. You might have datacenters that are
really good at data governance. With these centers of excellence in
place, you can quickly overcome many roadblocks.

Reluctance to Commit to Open Source
It’s taken a while, but open source is no longer such a dirty word with
mainstream enterprises, even fairly traditional ones like financial
services or health care companies.

Figure 2-8 shows that “open source software programs play an
important role in how DevOps and open source best practices are
adopted by organizations,” according to a survey conducted by the
New Stack and the Linux Foundation.

Figure 2-8. Large companies most likely to use open source

In the survey results, more than half of respondents (53%) across all
industries say their organizations use an open source software pro‐
gram or have plans to use one. Large companies are almost twice as
likely to run an open source program than smaller companies (63%
versus 37%). And the number of large companies using open source
programs is expected to triple by 2020.

26 | Chapter 2: The Importance of Building a Self-Service Culture

http://bit.ly/2UOSCvM


Companies with open source programs also see more benefits from
open source code and community participation. As Figure 2-9 high‐
lights, 44% of companies with open source programs contribute
code upstream, whereas only 6% of other companies do so.

Figure 2-9. Companies with open source programs are more likely to
benefit

There are three key arguments for adopting open source software:

• Your company is on the cutting edge of software innovation.
• Your company is able to tap into a huge community of support.
• Your company can “fork” your own version of open source soft‐

ware to build into your applications.

Going the other way—to closed, proprietary big data solutions—you
might have clearer roadmaps. You certainly have more structure.
And you’re paying for stability and enterprise-grade support if
something goes wrong. The latter is probably the number one rea‐
son: if something goes wrong, you know who to yell at. You have a
contract that says the issue will be fixed within four hours. More
risk-averse companies tend to stick with proprietary systems. But
even that is changing, as big conservative financial institutions like
JPMorgan have embraced Hadoop and other open source big data
tools.
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CHAPTER 3

Getting Started Building
Your Data Lake

By now you’re probably thinking, “How does the cloud fit in? Why
do organizations decide to build their data lakes in the cloud? How
could this work in my environment?” As it turns out, there isn’t a
one-size-fits-all reason for building a data lake in the cloud. But
many of the requirements for getting value out of a data lake can be
satisfied only in the cloud.

In this chapter, we answer the following questions:

• As your company’s data initiatives mature, at what point should
you think about moving to a data lake?

• Why should you move your data into the cloud? What are the
benefits?

• What are the security concerns with moving data into the
cloud?

• How can you ensure proper governance of your data in the
cloud?

The Benefits of Moving a Data Lake to the
Cloud
The Enterprise Strategy Group asked companies what the most
important attributes were when working with big data and analytics.
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Not surprisingly, virtually all of the attributes listed were those
found when building big data lakes in the cloud, as depicted in
Figure 3-1.

Figure 3-1. Most important attributes when building a data lake

With the cloud come the following key benefits:

Built-in security
When it comes to security, cloud providers have collected
knowledge and best practices from all of their customers and
have learned from the trials and errors of literally thousands of
other companies. What’s more, they have dedicated security
professionals—the best in the industry—working on continually
improving the security of their platforms. After all, trust in their
ability to keep their customers’ data safe is key to their success.

High performance
The resources available from cloud providers are virtually infin‐
ite, giving you the ability to scale out performance as well as a
broad range of configurations for memory, processors, and stor‐
age options.

Greater reliability
As in your on-premises datacenters, cloud providers have layers
of redundancy throughout their entire technology stacks. Ser‐
vice interruptions are extraordinarily rare.
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Cost savings
If you do it well, you’ll get a lower total cost of ownership
(TCO) for your data lake than if you remained on-premises.
You’re paying only for the compute you need, and the tools you
use are built specifically for the cloud architecture. Automation
technologies like Qubole prevent failure and thus lower the
risks of operating on big data at scale, which offers a huge value
for the DevOps team, who are no longer called in the middle of
the night when things break.

A lot of these benefits come from not having to reinvent and main‐
tain the wheel when it comes to your infrastructure. As we’ve said
before, you need to buy only as much as you use, and build only
what you need to scale out based on demand. The cloud is perfect
for that. Rather than spending all your time and energy spinning up
clusters as your data grows and provisioning new servers and stor‐
age, you can increase your resources with just a few clicks in the
cloud.

Key Benefit: The Ability to Separate Compute and
Storage
One requirement inexorably pushing companies toward the cloud is
that to work with truly big data, you must separate compute from
storage resources. And this type of architecture is possible only in
the cloud, making it one of the biggest differences from data plat‐
forms built for on-premises infrastructure. Two technologies make
this separation possible: virtualization and object stores.

Virtualization makes it possible for you to provision compute in the
cloud on demand. That’s because compute in the cloud is ephem‐
eral: you can instantaneously provision and deprovision virtual
machines (VMs).

Precisely because compute is ephemeral, the separation of compute
and storage is critical for storage of “persistent” assets such as data.
This separation is achieved by different storage technologies in the
cloud that are persistent: block stores and object stores. For large data‐
sets, object stores are especially well suited for data storage.

Object storage is an architecture that manages storage as objects
instead of as a hierarchy (as filesystems do) or as blocks (as block
storage does). In a cloud architecture, you must store data in object
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stores and use compute when needed to process data directly from
the object stores. The object stores become the place where you
dump all of your data in its raw format. Cloud-native big data plat‐
forms then create the compute infrastructure needed to process this
data on the fly.

Note that this is different from typical on-premises data architec‐
tures for big data. Because of the lack of highly scalable object stores
that can support thousands of machines reading data from and writ‐
ing data to them, on-premises data lake architectures stress conver‐
gence of compute and storage, as illustrated in Figure 3-2. In fact,
Hadoop is based on the principle that compute and storage should
be converged. The same physical machines that store data also per‐
form the computation for different applications on that data.

Figure 3-2. The key benefits of cloud-based data platforms: elasticity
and separation of compute and storage

Although this is the standard architecture for on-premises big data
platforms, lifting and shifting this architecture to the cloud greatly
nullifies the elasticity and flexibility benefits of the cloud.

Thus, the cloud allows you to tailor and structure your compute and
storage resources exactly the way you need them. This emables you
to eliminate worries about resource capacity utilization. It’s like
using Lyft or Uber rather than owning and maintaining your own
car. Instead, a car is a just-in-time resource—just as raw goods are
made available just in time in manufacturing—that you can use
when you need it. This saves time and money, and reduces risk.

The separation of compute from storage is important because com‐
pute and storage have different elasticity requirements. Businesses
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don’t tend to buy and then throw away storage. If you write some‐
thing to storage, it’s very rarely deleted—not just for compliance
reasons (although that’s part of it), but because businesses are very
reluctant to throw data out.

Compute, on the other hand, is wanted only when needed. You don’t
want thousands of CPUs sitting idle. That’s just wasteful—not just
for your organization, but for the environment, too. This is just one
of the reasons big data platforms are modernized for the cloud; data
inherently has an expiration date on value. You might need to pro‐
cess information only once or a few times. Having elasticity of com‐
pute allows for completely efficient use of resources in the analytics
life cycle.

This separation of compute and storage also helps you to have true
financial governance over your data operations. You can appropri‐
ately tune and size your clusters for the given workloads without
having to allow for extra compute resources during peak processing
times, as you would with an on-premises infrastructure.

Some companies are simply lifting and shifting their
on-premises Hadoop platforms, such as those dis‐
tributed by Cloudera or Hortonworks, into the cloud.
These companies are actually falling short because they
aren’t getting the benefits of separating storage from
compute and the advantages of being able to spin up
ephemeral clusters. Having their platforms in the cloud
thus won’t improve cost and flexibility results over
hosting their data lakes on-premises.

Object storage in the cloud
When it comes to object storage in the cloud, each provider offers
its own solution. An object store is a unique way of filing data;
whereas traditional systems use blocks of data, object stores make
data available in manageable files called objects. Each object com‐
bines the pieces of data that compose a file, including the file’s rele‐
vant metadata, and then creates a custom identifier. This combines
the power of a high-performance filesystem with massive scale and
economy to help you to speed up your time to insight.

AWS has its Simple Storage Service (Amazon S3), which is storage
for the internet. Designed to make web-scale computing easier for
developers, it has a simple web services interface that can be used to
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store and retrieve any amount of data, at any time, from anywhere
on the web. You pay only for what you use.

Microsoft offers Azure BlobStore as well as Azure Data Lake Storage
(ADLS). Azure Blob storage is Microsoft’s object storage solution for
the cloud; it is optimized for storing massive amounts of unstruc‐
tured data such as text or binary data. ADLS Gen 2 is a highly scala‐
ble and cost-effective data lake solution for big data analytics.

Finally, Google offers Cloud Storage. Cloud Storage allows world‐
wide storage and retrieval of any amount of data at any time. You
can use Cloud Storage for a range of scenarios including serving
website content, storing data for archival and disaster recovery, or
distributing large data objects to users via direct download.

Distributed SQL versus a data warehouse

Another critical decision that organizations face when moving to a
cloud data lake is how to migrate their data assets. More often than
not, traditional organizations run on online analytical processing
(OLAP) systems that have RDBMS and SQL Server backends. These
tend to be structured and require data to be persistent with com‐
pute. Moving to a cloud object store and then separating data pro‐
cessing from storage can be challenging. Furthermore, certain
applications such as enterprise resource planning, financial soft‐
ware, and customer-facing interfaces require that data be highly
available.

Data lakes and data warehouses are both widely used for storing big
data, but these are not interchangeable terms. Data lakes are vast
pools of raw data that have a number of different purposes and can
be used for processing later on. Data warehouses (often referred to
as data marts), on the other hand, store information that has already
been processed for a specific purpose; they are intended as reposito‐
ries for structured and filtered data.

In the strictest sense of the term, a data warehouse is meant to hold
a subset of the information stored in the data lake, only in a more
optimized and readable format for nontechnical users. Many com‐
panies have different data warehouses for finance, manufacturing,
ordering, and procurement, for example. These data warehouses are
quite often separate from one another because they serve different
sectors of the organization. The idea behind a data lake is to bring
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these all together in a cohesive system that allows users to query
across organizational verticals and obtain more value from the data.

Differences in users
The users of data warehouses and data lakes are also different. Data
warehouses are typically operated by less technical users than those
using a data lake. That’s because data warehouses typically abstract
away from the users how data is stored, organized, and optimized.

Data lakes, on the other hand, require much more thought and
planning as to where data lives, how it’s updated and secured, as well
as knowledge of the data’s life cycle. Thus, data warehouses are typi‐
cally used by people who know SQL but could care less about the
minutiae of the underlying system. Data lakes are typically managed
and used by people who think in computer science terms and are
concerned with such things as column-oriented storage, block repli‐
cation, compression, and the order of data within data files.

In terms of roles and responsibilities, data analysts are typically the
target audience of data warehouses. Data engineers and data scien‐
tists are the primary users of data lake tools such as Hadoop and
Spark. That being said, if a data lake is correctly built, it can serve
the needs of all three types of users (analysts, scientists, and data
engineers) by supplying an engine for each use case that meets their
skillsets and goals.

The data may live in S3, for example, but a cloud-native platform
like Qubole offers something for each user with a rich set of engines
that can fulfill each user’s desired outcome. Data engineers typically
use Hadoop, Hive, and Spark; data scientists typically use Spark; and
data analysts tend to like Presto. Qubole can support all of these
simultaneously.

When Moving from an Enterprise Data
Warehouse to a Data Lake
If your business is primarily using an enterprise data warehouse, it is
important to ensure that you don’t disrupt existing IT operations in
the process of building out your data lake platform. A key best prac‐
tice is to start copying data from your warehouse to your data lake.
This creates a foundation for a platform that can scale storage and
compute resources separately while figuring out which operations
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you can migrate. Your data will then be available across a multitude
of use cases while you map out a plan of which teams or data opera‐
tions make sense to move in the near term. From there, your best
next step might be helping to get a successful data product out or
creating a new reporting pipeline operation that can demonstrate
measurable success to your organization.

How you want to prioritize your plan will be driven by a number of
common factors:

Capital expenditure (CapEx) and operational expenditure (OpEx)
Your business might not want to increase budget on CapEx
hardware, so offloading data mining onto the cloud could help
mitigate the need to buy more servers.

Analytics bottlenecks
As more users begin depending on your analytics models to do
their jobs, reporting and query volume rapidly increases, which
causes bottlenecks on other critical systems or hinders the cus‐
tomer experience. Offloading these users could help stabilize
your analytics processes and, subsequently, the business.

Employee resources and expertise
The company might be hiring more data scientists or analysts,
adding to the workloads of the data engineering and DevOps
teams who will support them. Focusing on these new and differ‐
ent demands will help you to see the gaps in personnel that you
need to fill.

Data analysts (SQL users) are typically the target audience of data
warehouses, and data engineers and data scientists are the primary
users of data lake tools such as Hadoop and Spark. This said, a well-
built data lake will serve the needs of all types of users (analysts,
product managers, and business users) by supplying an engine and
interface for all use cases that align with users’ skillsets and goals.

Deciding whether to start your cloud analytics operations by sepa‐
rating storage from compute will determine whether you go with a
cloud data warehouse (such as Redshift) or a distributed SQL engine
(such as Presto).
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Cloud Data Warehouse
There are two fundamental differences between cloud data ware‐
houses and cloud data lakes: the data types and the processing
framework. In a cloud data warehouse model, you need to trans‐
form the data into the right structure to make it usable. This is often
referred to as schema-on-write.

In a cloud-based data lake, you can load raw data—unstructured or
structured—from a variety of sources. Most business users can usu‐
ally analyze only data that has been “cleaned” by formatting it and
assigning metadata to it. This is called schema-on-read. When you
marry this operational model with the cloud’s unlimited storage and
compute availability, your business can scale its operations with
growing volumes of data, a variety of sources, and concurrent
querying while paying only for the resources utilized.

With this in mind, some large innovations in data warehouses focus
on using data in cloud object storage as the primary repository but
can scale out compute nodes horizontally. The most popular of these
are Amazon Redshift, Snowflake, Google BigQuery, and Microsoft
SQL Data Warehouse.

We describe Redshift in detail, but they all work in a similar manner.

Redshift
Redshift is a managed data warehouse service from Amazon, deliv‐
ered via AWS. Redshift stores data in local storage distributed across
multiple compute nodes, although Redshift Spectrum uses a Red‐
shift cluster to query data stored in S3 instead of local storage.

With Redshift, there is no separation of compute and storage. It does
provide “dense-storage” and “dense-compute” options, but storage
and compute are still tightly coupled. With Redshift, as your data
grows you inevitably buy more resources than you need, increasing
the cost of your big data initiatives.

Redshift, originally based on ParAccel, is proprietary and its source
code closed. This means that you have no control over what is
implemented or what is put in the roadmap. However, on the plus
side, with Redshift, you don’t need to manage your own hardware.
Simply load data from your S3 object store or disk, and you’re ready
to query from there. This is great for cases in which you are serving
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reports or data through a frontend interface from which your users
are slicing and dicing different dimensions of the data.

Cloud data warehouse services are great because they’re straightfor‐
ward to use, perform well, and don’t require the knowledge and sup‐
port savviness that is required when you use open source. That
being said, ease of use and performance come at a high cost. Given
that data remains persistent on disk, adding any new users or data
will increase costs exponentially.

Understanding which use cases best fit a distributed SQL technology
such as Presto or a data warehouse like Redshift will require you to
analyze your needs carefully. You also could find that you have a
data pipeline in which your reports are processed by Presto and sent
to individual customers via PDF, and then a subset of that data is
pushed down to the data warehouse to generate other reports or to
feed into customer-facing applications.

Data Lakes and Data Warehouses
We’ve talked a fair amount about data lakes versus data warehouses.
Does this mean that they are mutually exclusive? Absolutely not.
More often than not, organizations implement both as part of their
overall enterprise data architectures.

A data architect will evaluate the skill level of the teams requiring
the data and then build an architecture with the correct engine and
data that maximizes the needs and skill levels for the users interact‐
ing with that system.

For example, a large conglomerate will have many different organi‐
zational units within the company, such as finance, manufacturing,
shipping, and legal. Each business unit is typically interested only in
the data pertaining to its specific needs.

In the data lake and data warehouse hybrid model, the data lake
serves as the primary repository for the organization’s data. Because
different organizational units within the company need only a sub‐
set of the overall data in the lake, data warehouses can be set up to
contain just the extracts of data that the business units need. These
extracts then can be periodically refreshed from the data lake as
needed.
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Distributed SQL
If you want the advantages of separating compute and storage, but
with a feel that is similar to a data warehouse, Presto is an excellent
place to start.

Some important reasons why you might use a distributed SQL
engine include:

• You have bursty volumes of users analyzing data regularly.
• Data sizes you’re analyzing are unpredictable and large.
• You want to analyze data from multiple sources and data marts.
• You need to join large tables together for further analysis.

In the end, you should have a combination of both. So, your sched‐
uled batches with bursty volumes of data and ad hoc workloads are
running in a distributed engine, and your business intelligence ana‐
lytics or other systems that rely on information are fed into a data
warehouse with more uptime.

Presto
Presto is an open source SQL query engine built for running fast,
large-scale, analytics workloads distributed across multiple servers.
Presto supports standard ANSI SQL and has enterprise-ready distri‐
butions made available by services such as Qubole, AWS Athena, GE
Digital Predix, and HDInsight. This helps companies on other data
warehouses like Redshift, Vertica, and Greenplum to move legacy
workloads to Presto.

Presto can plug in to several storage systems such as HDFS, S3, and
others. This layer of Presto has an API that allows users to author
and use their own storage options as well. As we explained in the
previous section, this separation of compute from storage allows
you to scale each independently. This means that you use resources
more efficiently and ultimately can save costs.

Presto has several other advantages:

Supports ANSI SQL
This includes complex interactive analytics, window functions,
large aggregations, joins, and more, which you can use against
structured and unstructured data.
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Separates storage from compute
Presto is built such that each command is passed through a
master coordinator that dictates which nodes will run the job
through a scheduler.

Supports federated queries to other data sources
Presto supports querying of other database systems like MySQL,
Postgres, Cassandra, MongoDB, and more, so you can bring
together disparate data sources.

Performs fast distributed SQL query processing
The in-memory engine enables massive amounts of data to be
processed quickly.

And as we’ve said, Presto is open source. As such, it has accepted
contributions from third parties that enhance it, such as Uber, AWS,
Netflix, Qubole, FINRA, Starburst Data, Teradata, and Lyft. Face‐
book has kept a close eye on the project as well, and continues to
contribute its own improvements to Presto to the open source com‐
munity. Using an open source engine like Presto means that you get
advantages from others’ work while remaining in control of your
own technology.

Because Presto doesn’t typically care what storage you use, you can
quickly join or aggregate datasets and can have a unified view of
your data to query against. The engine is also built to handle data
processing in memory. Why does this matter? If you can read data
more swiftly, the performance of your queries improves correspond‐
ingly—always a good thing when you have business analyst, execu‐
tive, and customer reports that need to be made available regularly.

How Companies Adopt Data Lakes: The
Maturity Model
A TDWI report released in March surveyed how companies are
using data lakes and what benefits or drawbacks they’re seeing. In
the survey, conducted in late 2017, 23% of respondents said their
organizations were already using data lakes, whereas another 24%
expected to have one in production in the next 12 months.

Given this, how do companies move from traditional on-premises
data warehouses to data lakes in the cloud?
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Qubole’s five-step Big Data Cloud Maturity Model closely correlates
with a company’s migration to a data lake, as demonstrated in
Figure 3-3.

Figure 3-3. The Qubole Big Data Cloud Maturity Model

Stage 1: Aspiration—Thinking About Moving Away
from the Data Warehouse
In the first stage, the company is typically using a traditional data
warehouse with production reporting and ad hoc analyses.

Signs of a Stage 1 company include having a large number of apps
collecting growing volumes of data, researching big data but not
investing in it yet, and beginning to hire big data engineers. The
company likely also has a data warehouse or a variety of databases
instead of a data lake.

The classic sign of a Stage 1 company is that the data team acts as a
conduit to the data, so all employees must go through that team to
access data.

The key to getting from Stage 1 to Stage 2 is to not think too big. A
company should begin by focusing on one problem it has that might
be solved by a big data initiative, starting with something small and
concrete that will provide measurable ROI. For ecommerce compa‐
nies, that could mean building a straightforward A/B testing algo‐
rithm, or if your company has an on-premises setup, it could be
moving some customer reports so that you can deliver them under a
faster SLA.
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It’s important to understand that every new project build is a proof
of concept (PoC), whether you are new to data lakes or a pro. Com‐
panies should use the power of elasticity in the cloud to be able to
test and fail fast to iterate on what technology works best for each
use case.

Stage 2: Experimentation—Moving from a Data
Warehouse to a Data Lake
In this stage, you deploy your first big data initiative in a data lake.
This is typically small and targeted at one specific problem that you
hope to solve.

You know you’re in Stage 2 if you have successfully identified a big
data initiative. The project should have a name, a business objective,
and an executive sponsor. You probably haven’t yet decided on a
platform, and you don’t have a clear strategy for going forward. That
comes in Stage 3. You still need to circumvent numerous challenges
in this stage.

Some typical characteristics of a Stage 2 company:

• Company personnel don’t know the potential pitfalls ahead.
Because of that, they are confused about how to proceed.

• The company lacks the resources and skills to manage a big data
project. This is extremely common in a labor market in which
people with big data skills are snapped up at exorbitant salaries.

• The company cannot expand beyond its initial success, usually
because the initial project was not designed to scale, and
expanding it proves too complex.

• The company doesn’t have a clearly defined support plan.
• The company lacks cross-group collaboration.
• The company has not defined the budget.
• The company is unclear about the security requirements.

Whereas the impetus to reach the aspirational stage typically comes
from senior executives—where perhaps the CEO or CIO has read
about data lakes or heard about them at a conference—the experi‐
mental stage must be driven by hands-on technologists who need to
determine how to fulfill the CEO’s or CTO’s vision. It’s still very
much a PoC.
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Although you can certainly build your initial data lake on-premises,
it makes sense to start in the cloud. Why? Because you want to fail
fast, and you want to separate compute from storage so that you
don’t have racks upon racks of servers and storage arrays sitting
there on the chance that you might find workloads to fill them up
one day.

Starting with the cloud means that you have access to elastic resour‐
ces to do your PoCs and begin training your workforce. They will
fail at first—this is inevitable—but they can fail fast and cheaply in
the cloud, and they can realize success sooner than if they were on-
premises.

Analyzing data from different formats
During Stage 2, you’re getting initial datasets into the data lake to
meet initial use cases and preparing the foundations of your data
lake by doing database dumps in either JSON or CSV format. You’re
also beginning to analyze log files or clickstream data.

Remember, every build is a PoC. Whether you are new to data lakes
or a pro, you want to be able to test and fail fast to iterate your way
to success.

The JSON library in Python can parse JSON from
strings or files. The library parses JSON into a Python
dictionary or list. There are various circumstances in
which you receive data in JSON format and you need
to send or store it in CSV format. Of course, JSON files
can have much more complex structures than CSV
files, so a direct conversion is not always possible.

Then there’s clickstream data. Many platforms such as Facebook and
Google Ads rely on the data generated by user clicks. To analyze
clickstream data, you must follow a user’s click-by-click activity on a
web page or application. This is extraordinarily valuable because
having a 360-degree view of what customers are and are not clicking
on can dramatically improve both your products and your custom‐
ers’ experiences.

Important considerations for the data lake
Here are some common considerations during the exploratory
phase of data lake maturity:
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1. Onboard and ingest data quickly
One innovation of the data lake is rapid—and early—ingestion
coupled with late processing. This allows you to make integra‐
ted data immediately available for reporting and analytics.

2. Put governance in place to control who loads which data into the
lake

Without these types of controls, a data lake can easily turn into a
data swamp, which is a disorganized and undocumented dataset
from which it’s difficult to derive value. Establish control via
policy-based data governance and, above all, enforce so-called
“antidumping” policies. You should also document data as it
enters the data lake by using metadata, an information catalog,
business glossary, or other semantics so that users can find the
data they need and optimize queries.

3. Keep data in a raw state to preserve its original details and schema
Detailed source data is preserved in storage so that it can be
used over and over again as new business requirements emerge.

Stage 3: Expansion—Moving the Data Lake to the
Cloud
In this stage, multiple projects are using big data, so you have the
foundation for a big data infrastructure. You have created a roadmap
for building out teams to support the environment.

You also face a plethora of possible projects. These typically are
“top-down” projects; that is, they come from high up in the organi‐
zation, from executives or directors. You are focused on scalability
and automation, but you’re not yet evaluating new technologies to
see whether they can help you. However, you do have the capacity
and resources to meet future needs and have won management buy-
in for the project on your existing infrastructure.

If you’re not in the cloud by this time, you should be moving there
during this stage.

However, you’re still pretty rudimentary at this point. You probably
don’t have governance in place, and you probably don’t have well-
structured teams in place, either. You’re really just a step beyond
performing PoCs and you probably haven’t started hiring additional
team members. You haven’t started reaching out for people who are
visionaries or have a lot of experience in this area. Your teams are
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still learning. And you probably haven’t figured out what storage
formats you should have, how well they’re optimized, how to con‐
vert one to another, or how to order them. This is all perfectly natu‐
ral.

As far as challenges go, here’s what Stage 3 companies often
encounter:

• A skills gap: needing access to more specialized talent
• Difficulty prioritizing possible projects
• No budget or roadmap to keep TCO within reasonable limits
• Difficulty keeping up with the speed of innovation

Getting from Stage 3 to Stage 4 is the most difficult transition. At
Stage 3, people throughout the organization are clamoring for data,
and you realize that having a centralized team as the conduit to the
data and infrastructure puts a tremendous amount of pressure on
that team. To avoid this bottleneck in the company’s big data initia‐
tives, you need to find a way to invert your current model and open
up infrastructure resources to everyone, to fully operationalize the
data lake and expand its use cases.

Case Study: SolidFire Moves to the Cloud
Flash storage system vendor SolidFire (which was eventually
acquired by NetApp) was first running its data lake on-premises in
its datacenter using Hortonworks. The first iteration of the data
lake took almost a year to stand up due to the burden of having to
provision hardware and find space and power in an already-
crowded datacenter. After the cluster was up and running and data
was flowing in, users were able to start accessing the data through
Hue and Hive.

However, the DataOps team at SolidFire was small. As the users
grew, keeping up with the numbers and scaling the system became
problematic. There were also many usability issues with the first
iteration of the data lake. The table schemas for the data were
extremely complex, and Hive was the only engine provided to users
to interact with the data. This created a less-than-optimal experi‐
ence for users. At the same time, team members were busy with
operational challenges on a daily basis. It wasn’t uncommon for the
cluster to be 100% used by a few users and members of the DataOps
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teams to be up in the middle of the night changing out disks, RAM,
or CPUs multiple times a week. Burnout became a problem.

After the acquisition by NetApp and the development of an aggres‐
sive growth plan for the SolidFire product, the DataOps team knew
the on-premises architecture wasn’t going to scale with the busi‐
ness. The team needed to stay small, yet needed to focus more on
providing a great data experience. Users wanted more ways to inter‐
act with the data beyond Hive, and they were very interested in
Spark and notebooks. It was time for a massive change to the archi‐
tecture, and the team had a short list of requirements for the new
platform:

• Multiple engines to accommodate many ways to interact with
the data

• Better OpEx and CapEx control through a platform that can
autoscale

• A full-featured user interface so people can access the system
through a web app or programmatically via an API

• A cloud-native approach that can respond to changing busi‐
ness needs

Ultimately, the team decided on Qubole as the platform going for‐
ward. The multiple engines could easily drop in the existing Hive
and MapReduce ETL workloads already in production, and users
could now choose the engine that best suited their desired way to
access the data. Moving to a cloud-native platform also brought
several CapEx and OpEx advantages. The DataOps team didn’t
need to manage hardware any longer, and Qubole’s ephemeral clus‐
ters coupled with workload-aware autoscaling provided the desired
CapEx and OpEx controls. Finally, the full-featured user interface
meant that users could use a wide variety of tools to find value in
the data.

The changeover from the on-premises cluster to Qubole on AWS
was very quick;: around one month. After synchronizing the data
from HDFS to S3 and synchronizing the Hive metastore with
Qubole, users were given access to the tool and training if they
needed it.

The bottom line is that Stage 3 naturally pushes you out of your
comfort zone and to the point where you will need to invest in new
technologies and to shift your corporate mindset and culture. At this
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time, you absolutely begin thinking of self-service infrastructure,
and looking at the data team as a data platform team. You’re ready to
move to Stage 4.

Stage 4: Inversion
It is at this stage that your company achieves an enterprise transfor‐
mation and begins seeing “bottom-up” use cases—meaning that
employees are identifying projects for big data themselves rather
than depending on executives to commission them. Though this is a
huge shift for the company, there is a new challenge now, which is
maintaining organization and looking at where to spend smarter or
more efficiently across teams’ workloads.

You know you are in Stage 4 if you have spent many months build‐
ing a cluster and have invested a considerable amount of money, but
you no longer feel in control. Your users used to be happy with the
big data infrastructure, but now they complain. You’re also simulta‐
neously seeing high growth in your business—which means more
customers and more data—and you’re finding it difficult, if not
impossible, to scale quickly. This results in massive queuing for data.
You’re not able to serve your “customers”—employees and lines of
business are not getting the insight they need to make decisions.

Stage 4 companies worry about the following:

• Not meeting SLAs
• Not being able to grow the data products and users
• Not being able to control rising costs from growing or new

projects
• Not seeing collaboration across teams or data

Still, at this point the company is pretty mature. You know what
you’re doing. You’re now a data-driven organization and your data
lake is returning measurable ROI and has become the heartbeat of
the business.

You are now concerned about governance: controlling this very val‐
uable asset you now have in place. Governance structures need to be
mandated from the top down and strictly adhered to, and you must
publish action items that are followed up on every month or every
quarter to ensure that your governance activities live up to these
standards. You need to update your governance plans and add on
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security and reporting procedures. That’s why governance must be a
living, breathing thing.

You actually need three governance plans:

• Data governance
• Financial governance
• Security governance

We discuss governance more thoroughly in Chapter 5.

Stage 5: Nirvana
If you’ve reached this stage, you’re on par with the Facebooks and
Googles of the world. You are a truly data-driven enterprise that is
gaining invaluable insights from its data. Your business has been
successfully transformed.

Case Study: Large Travel Conglomerate Moves Its Data
Lake to the Cloud

One of Qubole’s customers is among the largest travel brands in the
world—one that has grown tremendously through acquisitions
over the past few years. An early data lake proponent, this firm
(which requested anonymity) adopted Hadoop and Spark early on.
The data team was centralized and worked as a “service provider”
to all the departments and business units. Says a senior data scien‐
tist for the firm, “We basically had a centralized data science depart‐
ment, but the individual brands and business units each had their
own data science teams as well that focused on their specific needs.”

The centralized data team owned and operated a massive on-
premises 600-node Hadoop cluster with a Teradata system for data
warehousing. It was using Hortonworks. The data scientists and the
data analysts from all the various divisions and departments would
tap into this data lake for their own needs.

But because the company’s architecture under Hadoop had the
compute and storage coupled tightly, it began to run into limits
with its model. As demand grew from the departmental data scien‐
tists—who wanted to run queries on the data to solve their own
business challenges—compute became scarce. Requests for com‐
pute resources were being either pushed down the pipeline or
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refused. There were questions of who should bear the cost of pur‐
chasing more computer and storage resources.

One department realized that it had to do something. It decided to
jump to the cloud.

As part of a PoC, Qubole came in and moved some data to the
cloud for one of the business units. After this was set up, this partic‐
ular team was completely autonomous. It had turnkey access to the
computing framework, and because the framework was automated
and self-managed, the team no longer had to depend on someone
who had the technical skills to run the cluster, because Qubole takes
care of that. “At first, it was just the one team using Qubole,” recalls
the senior data scientist. “And we had full run of the show and
unlimited capabilities.”

Slowly but surely, other data teams became involved, and eventually
the entire company moved to the cloud. “And with that came the
bean counters,” says the senior scientist. These were the professio‐
nals from the finance department who were concerned about finan‐
cial governance. “And the way our company is set up now is that
we’ve got rules, and we’ve got tags associated with specific teams
and products,” he adds. This created further change:

Each tag gets assigned a budget and someone reports on that
budget. If you go over that budget, an email gets sent to a person
in charge. Each team also now has a project manager who is usu‐
ally an experienced data scientist himself or herself. Their job,
among other things, is to make sure that projects stay within
budget. Because it’s too easy to commit cost overruns on the
cloud.

Soon the company knew precisely which departments were using
what cloud resources and for how long. This was essential given the
company’s structure, which had to do complicated chargebacks
based on which division was using shared resources. On top of
everything else, financial governance was achieved, so teams could
reinvest their budgets in other projects valuable to the organization.

As news of this new capability spread through the company, soon
the team, through Qubole, was providing access to data in the cloud
to a broad range of internal “customers” within the larger company.
Effectively, it was taking the centralized data team’s customers away
by meeting their needs better. There was still some administration
involved, but the individual teams handled that themselves.

They learned that they didn’t need to rip out and replace their
entire ETL processes; they simply needed to replicate the data com‐
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ing into the data lake to the cloud. They internally developed a tool
that would help replicate this system from an on-premises HDFS
system into Amazon S3.

This enabled the data scientists and analysts and other users to dip
into the cloud-native data lake and run their models and queries
without any hassles.
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CHAPTER 4

Setting the Foundation
for Your Data Lake

In Chapter 3, we examined the maturation stages that you will go
through as you begin to actualize the value of your data. Now, it’s
time to look more closely at what it takes to build the data lake.

Setting Up the Storage for the Data Lake
One of your first considerations in building your data lake will be
storage. There are three basic types of data storage: immutable raw
storage, optimized storage, and scratch databases. The type of data
and how you use it will determine which data goes where.

Immutable Raw Storage Bucket
Data kept in immutable storage cannot, and should not, be changed
after it has been written. In an immutable raw storage area in your
data lake, you store data that hasn’t been scrubbed. You might never
have even looked at it. But it should have sufficient self-descriptive
language, or metadata, around it—such as table names and column
names—so that you can determine where the data came from. You
might store it in a text format such as JavaScript Object Notation
(JSON) or comma-separated values (CSV), or perhaps even Apache
Avro. Most people choose to store it in either JSON or CSV files.

Immutable raw storage fills many data storage needs. Three of the
most important are:
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Disaster recovery
If anything ever happens to the original data stores, you have an
exact replica.

Forensic analysis
Immutable raw storage records can be used to trace problems,
such as when bugs were introduced into a program.

Ability to re-create and update optimized formats
Immutable raw storage ensures that the data is always there in
its original state, to be used again if needed.

For example, if your transactional tables are dumped every morning
into the immutable raw storage area, you would have snapshots of
data, which is very important for the three aforementioned reasons.
Financial companies may need these snapshots to review data and
see how it has changed over time. You might need these tables if
you’re ever audited, or if transformed files become corrupted.

After you have an audit table, transactional systems become
unwieldy and difficult to manage—that’s why you want a raw data
bucket. You shouldn’t change the data in it; after all, it’s raw, static,
slow, and pretty damn dirty. But you can query and optimize it.

Types of Data Formats in Your
Immutable Raw Storage Bucket

JSON, a lightweight data-interchange format based on a subset of
JavaScript, is easy for humans to read and write, and also easy for
machines to parse and generate. The following is a quick sample:

{

 "title":"Programming Hive"

 "authors":[“Edward Capriolo","Dean Wampler","Jason

 Rutherglen"],

 "isbn-10":"1449319335"
}

CSV format files are delimited plain-text files in which each record
consists of one or more fields that are separated by commas. The
commas separate values of tabular data:

title,authors,isbn-10

"Programming Hive","Edward Capriolo,Dean Wampler,Jason
 Rutherglen","1449319335"
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When you create this raw storage area, remove all
“destructive” privileges from the data to ensure that no
one can alter or delete it. You also need to do careful
access control if the data contains any personally iden‐
tifiable information (PII).

Optimized Storage Bucket
As your raw data grows, your queries into it become slower. No one
likes waiting hours to see whether their query succeeds, only to find
that it failed. Data scientists and analysts need their questions
answered to turn data into insights faster than that. To gain this
speed, transforming your data by storing it using one of the many
optimized formats available. Three open source choices are Parquet,
optimized row column (ORC), and Avro.

Apache Parquet
Apache Parquet (Figure 4-1) is an open source, column-oriented
storage format for Hadoop. Parquet is optimized to work with com‐
plex data in bulk and includes methods for efficient data compres‐
sion and encoding types.

Figure 4-1. The Parquet file structure
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ORC
ORC (Figure 4-2) stores collections of rows in one file, with the row
data stored in a columnar format. This allows parallel processing of
row collections across a cluster. Each file with the columnar layout is
optimized for compression. Skipping data and columns reduces
both read and decompression loads.

Figure 4-2. The ORC file structure

Avro
Avro (Figure 4-3) is a remote procedure call and data serialization
framework. Developed within Apache’s Hadoop project, it uses
JSON to define data types and protocols, and serializes data in a
compact binary format.
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Figure 4-3. The Avro file format

You can split files stored in Parquet, ORC, and Avro formats across
multiple disks, which enables scalability and parallel processing.
JSON and XML files cannot be split, which seriously limits their
usefulness.

All three formats carry the data schema within the files themselves,
which is to say they’re self-described. You can take an ORC, Parquet,
or Avro file from one cluster and load it on a completely different
machine, and the machine will know what the data is and be able to
process it.

In addition to being file formats, Parquet, ORC, and Avro are also
on-the-wire formats, which means you can use them to pass data
between nodes in your Hadoop cluster. Table 4-1 compares the
characteristics of the formats.

Table 4-1. Qualities of ORC, Parquet, and Avro

ORC Parquet Avro
Row or column Column Column Row
Compression Great Great Good
Speedup (compared to text file) 10–100x 10–100x 10x
Schema evolution Good Better Best
Platforms Hive, Spark, Presto Hive, Spark, Presto Hive, Spark
Splittability Best Best Better
File statistics Yes Yes No
Indexes Yes Yes No
Bloom filters Yes No No
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Scratch Database
Finally, you will usually create what are called user scratch databases.
These are necessary because data scientists and analysts will want to
take data out of the optimized schema and build test tables for their
own purposes. But because you don’t want anyone to inadvertently
mess up your data lake—or turn it into a data swamp—you need a
place where users can have their own little sandboxes to play in that
won’t mess up the clean, well-defined, and well-structured data in
the optimal data space.

For this, too, you need governance. How big can these databases be?
How do you monitor them? Do you need an automated report fired
off each week to remind people to clean up their data? There’s a lot
of housekeeping to perform when you have scratch databases in
your data lake.

Here are some of the benefits of a scratch database:

• Users can do their work without fear of overwriting sources of
truth.

• DataOps can manage resources by user, team, or product.
• The business has the ability to place governance controls at the

user level.

The Sources of Data
For many businesses, the primary source of data in their data lake is
transactional systems, MySQL, PostgreSQL, and Oracle, among oth‐
ers. These are the frontend databases that interact with your cus‐
tomers. We recommend pulling data out of these databases,
converting it to JSON or CSV, and then storing it in your immutable
raw storage area where it can be made easily available to your users.

You can also have data feeds that come from internal applications or
third-party data services.

The other kind of data is the clickstream data coming in from appli‐
cations, social media, the IoT, or sensors. Those can have any num‐
ber of formats. Although most applications use JSON for this kind
of data, remember that it’s coming from your edge, and that it’s
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probably had very little scrubbing. Again, we recommend putting
that into the raw data bucket.

Getting Data into the Data Lake
Because data can be moved directly into the raw storage area of the
data lake from a broad variety of sources in a wide range of formats,
the data lake becomes a very compelling business tool. Data scien‐
tists and analysts now have the “one source of truth” we talked about
in Chapter 2, and they can immediately begin querying the data for
insights without having to worry about navigating silos or waiting
for the data to be modeled and put through ETL processes.

Any refining, structuring, filtering, or preparation of data can hap‐
pen whenever the data is needed by the business.

You can move data into this raw storage area using a broad range of
tools, including ETL tools, bulk file-loading facilities, data integra‐
tion tools, and even data movement tools that were specifically cre‐
ated for big data technologies. The result is that over time all the raw
data—structured and unstructured—from all over the organization
can be made available in one place.

Automating Metadata Capture
If you build it correctly, a data lake can add significant value to your
data architecture. By providing you with large data storage, process‐
ing, and analytics capabilities,it enables you to be very agile when
filling it or accessing it. When used together with a data warehouse,
it can free up costly resources and more efficiently process large vol‐
umes of data.

To work most efficiently, a data lake needs to take advantage of auto‐
mated metadata capturing and management tools. You need to cap‐
ture and maintain attributes like data lineage, data quality, and usage
history to make the data actually usable, yet doing this requires a
highly automated metadata extraction, capture, and tracking facility.
Manual metadata management processes cause the metadata to
quickly fall out of synchronization with the data itself, turning the
data lake, again, into a data swamp.

As discussed in Chapter 3, a well-designed data lake will integrate
closely with the enterprise data warehouse and its ETL, data cleans‐
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ing, and data profiling tools. Your users should be able to run
reports and perform analyses using the tools they’ve always used.

Data Types
You’ll have many, many different types of data to work with as you
fill up your data lake. These can be divided into three groups: struc‐
tured (which includes the data you can put into ORC and Parquet);
semi-structured (text, CSV, and JSON); and unstructured (images
and binary files). The three data types exist on a continuum, with
unstructured data being the least formatted and structured data
being the most formatted.

The more structured the data, the easier it is to work with, whereas
semi-structured and unstructured data create more challenges. Yet
all types of data play roles in effective data analysis.

Let’s now take a closer look at each of them.

Structured Data
Structured data is data that has been organized into a formatted
repository, typically a database, so that its elements can be made
addressable for more effective processing and analysis. Some exam‐
ples of structured data include HR data on employees—for example,
names, Social Security numbers, addresses—that is captured and put
in separate fields so that it can be easily searched and retrieved. The
same is true for sales data; when a customer buys a product, you
have a structured record of what that person bought, the date it was
purchased, and the price.

Semi-Structured Data
Semi-structured data has some structure to it; for example, it main‐
tains internal tags and markings that identify separate data elements,
enabling you to create information groupings and hierarchies. Both
documents and databases can be semi-structured. Although this
type of data is at most 10% of the data pie, it is used in many
business-critical applications. CSV, XML, and JSON are all examples
of semi-structured data. Some less common examples include email
and fixed-length electronic data interchange formats.
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Unstructured Data
Unstructured data encompasses everything that isn’t structured or
semi-structured data. It has an internal structure but is not struc‐
tured via predefined data models or schema, and can be textual or
nontextual, human- or machine-generated. Text documents and the
different kinds of multimedia files (audio, video, photo) are all types
of unstructured data file formats.

The reason all of this matters is because a cloud data lake allows you
to quickly throw structured, semi-structured, and unstructured
datasets into it and to analyze them using the specific technologies
that make sense for each particular workload or use case. Table 4-2
compares the three data types.

Table 4-2. Qualities of structured, semi-structured, and unstructured data

Structured data Semi-structured data Unstructured data
Example RDMS tables, columnar

stores
XML, JSON, CSV Images, audio, binary, text,

PDF files
Uses Transactional or

analytical stores
Clickstream, logging Photos, songs, PDF files,

binary storage formats
Transaction
management

Mature transactions
and concurrency

Maturing transactions
and concurrency

No transaction
management or
concurrency

Version
management

Versioned over tuples,
rows, tables

Not very common;
possible over tuples
and graphs

Versioned as a whole

Flexibility Rigorous schema Flexible, tolerant
schema

Flexible due to no schema

Storage Management in the Cloud
In Chapter 5, we look at how data life cycle management is a policy-
based approach to managing the flow of a system’s data throughout
its life cycle—from creation and initial storage to the time when it
becomes obsolete and is deleted. You will need to make decisions
when it comes to where different datasets are stored and when to
move them to a different storage type or delete them.

A multitemperature data management solution refers to one system
with different types of data storage and access. In such a system
there might be data that is frequently accessed on fast storage (hot
data), as well as less frequently accessed data stored on slightly
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slower storage (warm data), and rarely accessed data stored on the
slowest storage an organization has (cold data).

AWS, for example, has a cold storage format called, appropriately
enough, Glacier. Although it’s much cheaper than the typical, imme‐
diately retrievable storage in S3, you don’t have immediate access to
data in Glacier. It could take up to 24 hours to get your data out of
Glacier and back into your hot storage area.

In fact, Amazon gives you tiers in S3 so that you can have frequent
storage access, infrequent access, and probably-never-accessed data
(archival data in case you are ever audited).

Data Governance
As your data journey continues, you will need to think of data gov‐
ernance. For example, how do you handle National Provider Identi‐
fiers (NPI) such as customers’ financial information and PII?

Questions like the following need to be answered:

• Where did this data come from?
• What is the data lineage?
• How has it been transformed?
• What did it look like originally?
• What is the shape of my data?
• How will the schema evolve?

Though many startups don’t use credit cards at first for fear of fraud
or because of cost, eventually they start storing credit card numbers
and customers’ PII, and then they’re under a different set of guide‐
lines: payment card industry (PCI) regulations.

At this point there is a shift in data governance needs. These startups
need to begin adding more change controls with respect to who can
access the data and how they access it to comply with regulations
like the European Union’s General Data Protection Regulation
(GDPR) or Health Insurance Portability and Accountability Act
(HIPAA) for medical data. The next chapter discusses the topic of
data governance in more detail.
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CHAPTER 5

Governing Your Data Lake

Now that you’ve built the “house” for your data lake, you need to
consider governance. And you need to do it before you open the
data lake up to users, because the kind of governance you put into
place will directly affect data lake security, user productivity, and
overall operational costs. As described in Chapter 3, you need to
create three governance plans:

• Data governance
• Financial governance
• Security governance

Data Governance
When formulating a data governance policy, you’ll inevitably
encounter these questions about the data life cycle:

• How long is this data good for?
• How long will it be valuable?
• Should I keep it forever or eventually throw it away?
• Do I need to store it because of government regulations?
• Should I put it into “colder” storage to lower costs?

Many enterprises have data that doesn’t need to be accessed fre‐
quently. In fact, your data has a natural life cycle, and an important
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data governance task is to manage data as it moves between various
storage resources over the course of that life cycle. Storage life-cycle
management is thus becoming an increasingly important aspect of
data storage decisions. The cloud offers a variety of storage options
based on volume, cost, and performance that you can choose from
depending on where in its life cycle your data currently resides.

Public cloud providers like AWS and Azure offer storage life-cycle
management services. These allow you to move data to and from
various storage services. In most cases, life-cycle management
options allow you to set rules that automatically move your data—or
schedule deletion of unneeded data—after specified amounts of
time.

Although details vary, data-management experts often identify
seven stages, more or less, in the data life cycle (see also Figure 5-1).

1. Create
Data enters or is created by the business. This can be from a
transaction, from the purchase of third-party data sources, or,
increasingly, from sources like sensors on the IoT.

2. Store
If the data is stored in a data lake, it is kept in its raw state, and
governance makes sure it doesn’t become corrupted, changed,
or lost.

3. Optimize
The data is scrubbed, organized, optimized, and democratized
to be accessible to the rest of the organization.

4. Consume
This is where analysts, scientists, and business users access the
data and perform analyses and transformations on it.

5. Share
Analysts, scientists, and users can share the data analyses and
transformations they’ve created with others.

6. Archive
Data is removed from the data lake. It is no longer processed,
used, or published but is stored in case it is needed again in the
future.
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7. Destroy
In this phase, data that was previously available in hot storage is
deleted. This is usually done after the data has been archived.

Figure 5-1. The seven stages in the data life cycle

Privacy and Security in the Cloud
Data privacy has become a center of focus because of the ever-
increasing requirements of regulations in the industry, including
government regulations such as GDPR and HIPAA.

This is especially important when you move to the cloud because
you are conceding some control of your environment to a third-
party provider. Traditional forms of security that are perimeter-
centric are no longer sufficient, because data has become the
perimeter in the cloud data lake.

Traditionally, all data operations were kept in-house in your on-
premises datacenter, but now that you’re using the cloud, the cloud
provider controls where the data resides, and it’s up to you to man‐
age the rights of the data subjects. For example, under GDPR, you
are responsible for protecting the privacy rights of customers,
whether it is through anonymization or deletion of their data. You
need to keep in mind that your cloud provider might be working
with other third-party vendors. In such cases, it becomes essential to
look at who controls which people can access what data. You need to
ensure that you have the appropriate controls in your application
infrastructure, but you also need to take a more data-centric
approach to security that offers granular data security using technol‐
ogies like encryption, masking, filtering, and data redaction.
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Depending on your industry, you’ll need to think carefully about
conforming to HIPAA or PCI regulations. And you need auditabil‐
ity so that you can demonstrate who has access to data, how the data
is being accessed or is proliferating, and how you ensure that appro‐
priate controls are in place to demonstrate compliance.

Ensuring that your data lake is secure also requires you to think
about data retention. You have two different kinds of responsibilities
when it comes to data retention. First, there are the general data
retention policies that enterprises must follow as defined by regula‐
tions. The best guidelines for these are from the National Institute of
Standards and Technology and the International Organization for
Standardization. Second, you need to ensure that you put provisions
in place so you can delete, purge, or archive data that you’ve been
collecting about individuals or businesses—especially given the EU’s
GDPR and “right to be forgotten” rules.

Governing your data for privacy and security also requires that you
take certain actions. First, you need to be aware of your data. Tech‐
nologies and tools exist to help you automate this process, so you
can scan your data lake to identify exactly what kind of data you
have and what’s appropriate for your business.

After data discovery, you need to confirm that the intelligence
you’ve gathered can be continuously and automatically augmented.
You also need to be able to identify things like data lineage, which
gives you the ability to keep up to date on when data moves across
the enterprise, when data is transformed, and when data is deleted.

The third aspect is to ensure that this catalog that you created and
are continually augmenting is available for users to consume. These
could be business users, data analysts, or data scientists, but they will
all want the ability to see the data lineage, where the data has come
from, and who has done what to it.

Security Governance
One of the biggest concerns businesses have is whether the cloud is
secure. One way of reassuring yourself is to first count how many
security engineers you have working in your center. One, two, or
maybe three?

Then, ask yourself how many security engineers Amazon, Google,
or Microsoft have working for them. Probably thousands, if not tens
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of thousands. Security is possibly the biggest concern for their exist‐
ing business model. If companies with data in the cloud can’t pro‐
vide adequate security, no one will trust them.

Most security breaches come from internal vulnerabilities—for
example, people who don’t use strong passwords, don’t change their
passwords often enough, tape their passwords under the keyboard,
or share their passwords with colleagues. One way of dealing with
this type of threat is to segregate your work into different systems.
You might have one system for ad hoc reporting, one for canned
reports, and one for dashboards. Users are looking at the same
information, but in separate systems.

Ultimately, this is where object storage comes in. Remember, object
storage is ubiquitous across the entire computer infrastructure. Now
you can have that system of record or source of truth, and it can sit
on Amazon S3 and it can sit on Blob storage, and everyone is look‐
ing at the same data, even though they’re not running on the same
clusters or the same hardware. This provides different levels of secu‐
rity access to the data.

Financial Governance
Financial governance for data lakes is actually easier when you’re
using the cloud model than when you’re using the on-premises
model. The reason is very simple: you have visibility and control.

First, let’s talk about financial governance over compute. Compute
in the cloud is a logical, not physical, entity. It’s not like a CPU in
your datacenter. In the cloud, you can actually know at very fine
granularity exactly how many compute hours you use. And because
of that ability, you can be very specific about what you need—and
know how much it will cost. You can also put limits on compute
hours so that you can create a policy-based financial governance
model that says one group has a certain amount of compute hours,
whereas another group has more or less.

In the on-premises world, the notion of the compute hour never
existed. There was no need for it. After you bought a particular
compute unit or CPU, you had no incentive to actually break it
down and see exactly how many hours each particular workload
took. This lack of visibility led to a great deal of “server sprawl.”
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Many businesses find costs growing out of their control in the on-
premises world for a number of other reasons. First, scaling com‐
pute resources also means buying more storage nodes, regardless of
whether you need them, because compute and storage are inter‐
twined (unlike in the cloud). Next, as your investments in hardware
and software grow, you need additional engineering resources to
manage them. Migrating or upgrading on-premises hardware and
software is also costly, and raises the risk of creating siloed data
operations as it becomes more difficult for a single team to manage
a growing infrastructure and data platform. You also need to invest
in disaster recovery measures, which can mean having to buy dupli‐
cate systems to locate in a safe remote location.

In fact, the overall costs of running a physical datacenter are high
whether you rent or buy. Think of the expenses that accrue for
power, cooling, uninterruptible power supplies, and the space itself.
It all adds up.

On the other hand, financial governance becomes much easier to
achieve in the cloud. Reporting and monitoring is simpler, as is
enforcement. This can lead to significant cost savings overall.

Why is that? You now have a metric (compute hours) and you can
use that metric to pinpoint where, if at all, cost overruns or abuse is
occurring. Combine this elastic infrastructure with a billing model
that allows businesses to quickly scale as both data and users
increase, and you have an OpEx model that your CFO will love. No
more CapEx that can encourage overspending on unneeded
capacity. Or, the reverse frequently happens: your data teams run
out of resources and must wait for new ones to be procured and set
up. It’s no wonder that the OpEx model is being enthusiastically
embraced by traditional and cloud-native businesses alike.

You will need a plan for governing the costs of data
storage in the cloud. Otherwise, you could find your
storage bills begin to rise dramatically as data begets
data: the more users get into the data, the more they’re
creating other derived datasets. So, make sure that you
keep an eye on your storage bills as well as compute
hours. Happily, there are plenty of tools that give you
the visibility and control you need to do this.
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A Deeper Dive into Why the Cloud Makes Solid Financial
Sense
To understand why so many businesses save money in the cloud,
let’s look more closely at some of the fundamental components of
the cloud that enable financial governance. In particular, we define
big data clusters, cloud servers, and cloud virtual machine clusters and
explain how they contribute to the financial story of the cloud.

What is a big data cluster?
When you request compute resources in the cloud, you are getting a
section of a cluster. A big data cluster is a collection of machines,
called nodes, that provide the compute resources. The entire collec‐
tion of nodes is referred to as the cluster, as illustrated in Figure 5-2.
You can easily manage clusters by using one of several available
frameworks. Qubole uses YARN’s framework for processing and
resource allocation with Apache Hadoop, Hive, and Spark engines
(see the upcoming sidebar), whereas Presto has its own internal
resource manager.

Figure 5-2. A big data cluster

YARN
YARN (Yet Another Resource Negotiator) is a large-scale, dis‐
tributed operating system designed for cluster management and is
one of the key features in the second generation of Hadoop. Basi‐
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cally, it works like this: within the cluster, YARN understands
everything about the CPU and the RAM. It understands how much
RAM you need and how much CPU you need, and it monitors that
for all jobs coming into the cluster. In effect, YARN divides up CPU
and RAM into “containers,” and there’s only so many that live on a
particular cluster. With any given job, YARN will tell you how
much of your CPU and RAM have been consumed. The statistic
called “containers pending” lets you know what’s being processed
versus what’s in the queue.

Cloud virtual machine cluster
In the cloud, clusters are composed of VMs that reside together
within the compute space and are paid for when needed, providing
an elastic infrastructure to meet the demands of a business, as
shown in Figure 5-3. By using VMs, you get the following:

• Decreased spending and higher utilization
• Capacity to automate infrastructure management
• The right environment and the right tools for each workload

and team

Figure 5-3. How a virtual compute cluster works

Ultimately, this model of having ephemeral servers available to scale
up or down dynamically according to the workload demand of vari‐
ous big data clusters provides the foundational model of ensuring
financial governance for each of your workloads in the cloud.

Cloud servers
A cloud server is primarily an Infrastructure-as-a-Service–based
cloud service model. There are two types of cloud servers: logical
and physical. A cloud server is considered to be logical when it is
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delivered through virtualization. In this delivery model, the physical
server is logically distributed into two or more logical servers, each
of which has a separate operating system, user interface, and apps,
although they share physical components from the underlying phys‐
ical server. A physical cloud server, on the other hand, is also
accessed through the internet remotely; however, it isn’t shared or
distributed. This is commonly known as a dedicated cloud server.

How to Mitigate Cloud Costs: Autoscaling
There are several ways of imposing financial governance on your
cloud-based data lake. The most efficient way is autoscaling.
Autoscaling is a way to automatically scale up or scale down the
number of compute resources that are being allocated to your appli‐
cation based on its needs at any given time.

Figure 5-4 depicts this scaling, which is a visual of an autoscaling
Apache Spark cluster on Qubole. The x-axis represents a one-month
span of cloud servers (nodes) used by hour, and the y-axis is the
number of nodes used.

Figure 5-4. Autoscaling on an Apache cluster

Look at the first spikes of blue—that is, the cluster scaling up to
around 80 nodes to meet the demand of the workload. When that
workload is complete, autoscaling kicks back in and brings the
nodes back down to the amount needed to process that data.

Another interesting implication of autoscaling for this workload is
the jump in volume that indicates a spike in the seasonality of the
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business and thus the need to process more data to meet customer
demand.

These servers can be quickly provisioned and turned off, which
means that you can have different workloads with different server
needs. For instance, in an ad hoc environment, you might want
nodes that have a lot of memory to handle the concurrency of your
teams’ queries, whereas if you are running a massive ETL job, you
will likely need a lot of disk space to be able to handle larger vol‐
umes of data. The nature of these workloads will also affect the way
autoscaling works.

Figure 5-5 depicts the cluster workloads over a one-week period.
Zooming in on a 24-hour period shows how autoscaling can signifi‐
cantly reduce the costs of running clusters due to the fact that clus‐
ters are upscaled for only a small percentage of the day.

Figure 5-5. Cluster workloads over a one-month period

Spot Instances
Another way to save money in the cloud is to use spot instances. Spot
instances arise when AWS has any EC2 instance types sitting idle in
one of its datacenters. It releases these “spot” instances out to a mar‐
ketplace where any AWS customer can bid to use the extra capacity.
You can usually get away with bidding a fraction of the full value.
This is a great way to save money for various ephemeral big data and
analytics workloads because you can easily find EC2 instances at up
to 90% off the on-demand cost.
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In Figure 5-6, the lighter blue shading indicates spot nodes that are
running with on-demand nodes in a Qubole autoscaling cluster that
has been changed to run Spot on 90% to 100% of the nodes. This
allows for this 200- to 1,000-node cluster to run at more than an
80% discount, which is far beyond any vendor commitment dis‐
counts from AWS.

Figure 5-6. Using spot instances to achieve significant cost savings

Using AWS spot instances does come at a risk, though, as someone
can easily come in and outbid the spot instances you want if they’re
willing to pay a bit more. Finding the right configuration based on
different workloads requires a bit of skill, art, and occasional luck—
although we have noticed that stability and alerting for spot instan‐
ces has improved significantly over the past few years.

Here’ are a few good considerations when using spot instances:

• Spot instances can be taken away at any time. Resiliency must
be built in to the pipeline if you’re going to use them.

• Availability of spot instances can be lower at certain times of the
year. Examples of this are holiday seasons and large sporting
events such as the Super Bowl.

• Providing fault tolerance (for example, a high number of spot
nodes) introduces volatility into the entire cluster.

Measuring Financial Impact
Ultimately, the cloud data lake—and, more specifically, autoscaling
for cloud computing—allows you to segment your spending by
workload as needed. This is a huge shift for your teams’ budgets, as
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you might find spending fluctuates when your teams are investigat‐
ing or developing new projects, rather than focusing on system opti‐
mizations. Here are a few questions to ask yourself regularly when
managing analytics in a cloud data lake:

• Are your projects delivering ROIs that push key performance
indicators in a positive direction?

• Are you spending well? Are you getting your resources for the
best price possible?

• Are you keeping in mind that sometimes it’s not about spending
less, it’s about spending smarter?

Qubole’s Approach to Autoscaling
When Qubole started building autoscaling technologies, it evaluated
existing approaches to autoscaling and rejected them as being insuf‐
ficient for building a truly cloud-native big data solution. At the
time, and today still, most autoscaling is built on the server level,
which makes decision making very reactive and so causes latencies
and other inaccurate decisions (such as the estimated size of data
volume used in a query, or impact on memory when more queries
come in).

To avoid this, Qubole built autoscaling into Hadoop and Spark, ena‐
bling it to access the details of big data applications and the detailed
states of the cluster nodes. Being workload-aware makes a big differ‐
ence when your business is trying to orchestrate Hadoop and Spark
in the cloud. Figure 5-7 shows how Qubole uses the following fea‐
tures to enable autoscaling:

World-aware autoscaling
This is automation that allows autoscaling to be malleable in
different use cases and clusters based on the workload demands,
whether they are bursty or more constant.

Cluster life cycle management
This is when a cluster automatically starts and terminates (upon
idleness). This is a big difference between on-premises and pre‐
buying cloud instances that remain available 24/7.
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On-demand instances (nodes)
These are common cloud servers that are available to any cus‐
tomer immediately.

Spot nodes
These cloud servers are excess capacity for the infrastructure/
datacenter. They’re sold at discount prices, but are unstable
given that they can be taken back at any moment.

Figure 5-7. How Qubole autoscaling works for cost management
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CHAPTER 6

Tools for Making the
Data Lake Platform

Now that you’ve got the frame of a data lake house, it’s time to think
about the tools that you need to build up the data lake platform in
the cloud. These tools—in various combinations—can be used with
your cloud-based data lake. And certain platforms, like Qubole,
allow you to use these tools at will depending on the skills of your
team and your particular use cases.

The Six-Step Model for Operationalizing a
Cloud-Native Data Lake
Figure 6-1 illustrates a step-by-step model for operationalizing the
data in your cloud-native data lake platform. In the subsections that
follow, we discuss each step and the tools involved.
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Step 1: Ingest Data
As Chapter 5 discusses, you have various sources of data: applica‐
tions, transactional systems, and emails, as well as a plethora of
streaming data from sensors and the IoT, logs and clickstream data,
and third-party information. Let’s focus on streaming data. Why is it
so important?

First, it provides the data for the services that depend on the data
lake. Data must of course arrive on time and go where it needs to go
for these services to work. Second, it can be used to quickly get value
from data, whereas batch processing would take too long. Recom‐
mendation engines that improve the user experience, network
anomaly detection, and other real-time applications all require
streaming data.

You first need tools that ensure syncs or end points so we can auto‐
matically group the data into logical buckets. In other words, you
need tools to help you organize the streaming data in an automated
fashion, so you don’t have one “big blob” of data; you can separate it
into logical groupings. Relevant tools include Kinesis Streams for
capturing streaming data from edge devices, and Kinesis Firehose to
sync or move that data to Amazon S3 or Redshift. Then there’s
Kafka plus KStreams and Spark Structured Streaming. Although
aggressively promoted by Hortonworks, Apache Flume and Apache
Storm are less popular today because they lack the performance and
scalability of Kafka or Spark Structured Streaming.

When you first set up your streaming pipelines, it’s usually consid‐
ered a best practice to refresh the data every 24 hours, depending on
your business. For example, a financial company probably wants to
know what’s been happening in the markets within the last five
minutes. A shipping company has different needs. It wouldn’t make
any sense to update its data every five minutes, so relaxing and let‐
ting some latency into the pipeline for a few hours would probably
be all right for that particular use case.

The “Cold Start” Problem
Consumer-facing applications created by business-to-consumer
(B2C) companies, such as ecommerce retailing or banking, often
experience something called the cold start problem. When a new
user signs up for an application, that application has no informa‐
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tion about the user. But the B2C company wants to keep that user
engaged, so it asks for basic information such as name, age, gender,
and probably location. This is because the company wants to pro‐
vide the best user experience possible, even if it knows nothing
about that user.

Suppose you are that user. The company must figure out, in a very
short time, what is the best content to show you, even though it has
minimal information about you. In other words, it needs to catego‐
rize you as some segment. As a millennial? As a Californian? As a
man or woman? As the application gradually collects more data, the
cold start problem dissipates. For example, the first time you log on
to and browse through Amazon, the retailing giant knows very little
about you. But as you begin to browse, it’s recording your key‐
strokes and purchases, and even where you pause on the website, all
data to be used in building your profile. That’s streaming data at its
finest.

At this point, many businesses are already moving away from the
raw batch data derived from transactional systems, applications, or
IoT sensors. As you might recall, this raw data is neither cleansed
nor formatted. This is just an initial stage for the data.

After the data is moved into an optimal data store in the data lake, it
is cleaned and transformed. At this point, operators perform neces‐
sary governance, such as stripping out names or Social Security
numbers, depending on whether your business is responsible for
meeting compliance mandates such as HIPAA or PCI regulations.

You can transform and clean data inline at the same time. There is
no need for a separate batch process. And then your users can get
into real-time predictions and learning.

At this state, you need to be sure that the data lineage—the data’s
origins—has been tracked. You need to know not only where it
came from, but where it moved over time and when and if anything
was done to it.

Apache Atlas (discussed in more detail later in this section) can help
you track data lineage. Remember when we talked about all the
tribal knowledge held within these data silos? Atlas helps you to
concentrate it into one system and expose it to people searching for
data. Your users then can search for a particular column, data type,
or particular expression of data.
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One way to make this search process easier is to assign metadata in
plain English, free of acronyms or terms that only a few technical
users might understand. Think of the business user, not a member
of the technical team, who will be reading the metadata and making
decisions and discoveries based on it.

Querying the data stream
First, what is a data stream? In computer science, a stream is a
sequence of unbounded data elements made available over a span of
time. You can think of a stream as items on a conveyor belt being
processed one at a time, in a continuous flow, rather than in large
batches, or, to continue the warehouse analogy, a delivery truck
periodically dropping off a large load of items all at once. Streams
are processed differently than batch data—most normal system
functions can’t operate on streams, because they have potentially
unlimited data.

You can run queries on the data that’s in the stream. It wouldn’t be
the same as querying all of the data in the data lake. You would also
need a shorter time interval to query, such as 1 hour or 24 hours.
You could ask questions like, how many users signed up in the past
hour? How many financial transactions occurred in the past 2
hours?

Streams are not meant to hold massive amounts of data; they’re
designed to hold data only for a short time, typically from 5 minutes
to 24 hours. A streaming platform has three key capabilities. First, it
can publish and subscribe to streams of data, like traditional mes‐
sage queues or enterprise messaging systems can. Second, it stores
data streams in a reliable, fault-tolerant way. Finally, it can process
streams as they arrive.

Apache Kafka.    Kafka is an open source stream-processing software
platform that started as a distributed message queue for stream data
ingestion. Over time, it developed into a full-fledged streaming plat‐
form by including processing capabilities as well. Written in Scala
and Java, Kafka offers a unified, high-throughput, low-latency plat‐
form for handling real-time data feeds.

Apache Kafka is used for two types of applications:

• Real-time streaming data pipelines that reliably get data
between systems or applications
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• Real-time streaming applications that transform or react to the
streams of data

Tools to use for stream processing
The following tools can be used to process streaming data:

Spark Streaming
Although Kafka is often referred to as the “message bus,” Spark
can provide a streaming engine in conjunction with the Kafka
operation. The same data is going through Kafka; however, you
are using the Spark engine to enable processing of live data
streams. This is a streaming module of the Apache Spark eco‐
system (Figure 6-2) known for scalable, high-throughput, and
fault-tolerant stream data processing.

Figure 6-2. How Spark Streaming works

With Spark 2.0, Spark Streaming (now known as Structured
Streaming) has evolved significantly in terms of capabilities and
simplicity, enabling you to write code for streaming applications
the same way you write batch jobs. Internally, it uses the same
core APIs as Spark Batch with all of the optimizations intact. It
supports Java, Scala, and Python. Structured Streaming can read
data from HDFS, Flume, Kafka, Twitter, and ZeroMQ. You can
also define your own custom data sources, which could be stor‐
age such as the Amazon S3 object store or a streaming database
like Druid.

Apache Flink
Apache Flink is a scalable, high-throughput, and fault-tolerant
stream-processing framework popular for its very low-latency
processing capabilities. Flink was built by developers from the
Apache Software Foundation, most of whom are employed by
data Artisans (recently acquired by Alibaba).
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The core of Apache Flink is a distributed streaming dataflow
engine written in Java and Scala. Flink executes operators in a
continuous flow, allowing multiple jobs to be processed in par‐
allel as new data arrives.

There are several key differences between Spark Streaming and
Flink. Spark is a microbatch technology that allows latency to be
counted in seconds. Alternatively, Flink offers event-by-event
stream processing, so latency can be measured in milliseconds.
Flink is usually used for business scenarios where very low end-
to-end latency is important, such as real-time fraud detection.
Spark is usually used for streaming ingestion and streaming
processing, for which low latency is unimportant.

A point in favor of using Spark most of the time is its popular‐
ity. Data engineers are familiar with Spark for batch and ETL
use cases, so they end up using Spark for streaming as well for
familiarity and ease of use—unless there is a strong need for
very low-latency stream processing.

Apache Druid
This is an open source, high-performance, and column-oriented
distributed database built for event-driven data that was
designed for real-time, subsecond OLAP queries on large data‐
sets. Druid is currently in incubation (see the following note) at
the Apache Foundation. Druid has two query languages: a SQL
dialect and a JSON-over-HTTP API. Druid is extremely power‐
ful when it comes to running fast interactive analytics on real-
time and historical information.

What Is “Incubation” for Open Source Projects?
After a project has been created within the Apache
Foundation, the incubation phase is used to establish a
fully functioning open source project. In this context,
incubation is about developing the process, the com‐
munity, and the technology. Incubation is a phase
rather than a place: new projects can be incubated
under any existing Apache top-level project.

Step 2: Store, Monitor, and Manage Your Data
As you begin to develop your data lake, the structures in it become
well defined.
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You now have some governance around what the structures of your
data look like. You might now even have a DevOps team that is
monitoring the data using tools like LogicMonitor or Datadog
(more on these later).

At this point, you’re monitoring for operations that might be run‐
ning out of bounds or not working the way you expect. For data
engineers, in particular, dataflow governance is really important. As
data becomes more critical to the organization, the data engineering
team is in effect the headwaters of the data river. This is the team to
which everyone looks if something goes wrong. And if the data
doesn’t flow because the ETLs don’t happen, or if the data isn’t pro‐
cessed correctly, increasingly serious problems can occur down‐
stream—potentially all the way to the senior executives, or even the
CEO.

Monitoring your data lake
Monitoring is a critical function for any successful data lake. Moni‐
toring is a broad-ranging subject. Different types of users—DataOps
professionals, data engineers, data scientists, and data analysts—all
have different requirements for monitoring. For example, DataOps
professionals might be looking at resource usage, data ingest rates,
and overall CapEx and OpEx efficiency as well as cloud provider
health. Alternatively, data engineers might be looking at SLA objec‐
tives for ETL pipelines and data-quality reports. Data analysts and
data scientists might be interested in the data-quality reports so that
they can have confidence in the data provided to them.

Modern monitoring systems provide a rich set of services such as
dashboarding, anomaly detection, alerting, and messaging.

Reports and anomaly detection.    Monitoring services for cloud-scale
applications are extremely important to build into your systems at
this stage. They provide dashboarding capabilities to visualize the
health of your servers, databases, tools, and services through a SaaS-
based data analytics platform. Management tools with cutting-edge
capabilities such as collaboration, workflow, and dashboarding
include LogicMonitor, Datadog, and VictorOps.

Alerting.    Alerting is one potential output of a monitoring system,
drawing attention to an issue based on predetermined metrics so
you can take action to resolve the problem. Modern alerting plat‐
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forms let you program on-call rotations as well as escalation logic.
Leaders in this space include PagerDuty, Opsgenie, and VictorOps.

Messaging/communications.    Monitoring systems typically have mes‐
saging and communication components that allow your team to col‐
laborate. Whereas the alerting system can alert a specified group or
user if a specified system threshold is passed, the messaging and
communication capabilities help your team resolve issues quickly
and effectively. Another benefit of a centralized communication sys‐
tem is that it gives you the ability to search historical discussions for
solutions if issues recur. Leaders in this space include Slack, Google
Groups, and Discord.

Tools for managing data services
Data services play an important role in managing an organization’s
critical data. These tools are responsible for handling data ingestion,
preparation, federation, and propagation in the data lake.

Many times, these systems can directly impact the overall success of
a big data project by making it easier for users to discover and have
confidence in the data early in a project life cycle. Data services also
allow administrators to enforce governance by obfuscating sensitive
data or controlling which users can access which data.

Apache Ranger: Security
Ranger gives businesses the ability to enforce granular data access
controls. It’s a framework that lets you define policies to specify
who can access what data and in what context. For example, you
want HR staff to see payroll data, but not marketing. Ranger also
enables you to limit and enforce when data is accessed.

There are several benefits to using a tool like Ranger for managing
data in your data lake. First, you have a place to centrally define
policies and enforce them. Second, Ranger offers a level of granu‐
larity not previously attainable. Historically, you had to apply gran‐
ularity at the table level, not the row or column level. Ranger offers
a mechanism to apply data access controls at the row or column
level as well as data protection using techniques like masking. It can
also integrate with third-party solutions to offer a more granular
encryption solution. Ranger is a good tool for auditability as well:
you can easily demonstrate compliance with the security rules that
you have in place.
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There are drawbacks, however. Critics of Ranger point out that it is
a solution in an evolving space. The technology of big data changes
rapidly, with a variety of acts and mechanisms. Unfortunately,
Ranger currently restricts access or applies controls to only a subset
of access mechanisms. For example, it is suited for SQL-like query
access to data, but this can be limiting when users use other access
methods such as Java, R, or Python scripts. As granular access con‐
trols become more critical, we are seeing new solution offerings in
the market to address these gaps.

Best practices

Here are some of the most effective ways to use Ranger:

• It’s important to look at data protection as a variety of layers.
Don’t expect Ranger to be the one solution that offers complete
protection; it should be just one of the protection controls that
you enforce.

• Because the Ranger policies you set affect your business users,
always begin by trying simple policies for auditing, then follow
with more data access controls like row and column filtering,
and finally look at a much stronger mechanism to enforce pro‐
tection like masking or encryption. Proceed gradually.

Apache Atlas

Apache Atlas is a low-level service in the Hadoop stack that provides
core metadata services.

Atlas supports data lineage by helping people understand the meta‐
data for the data. It’s intended to provide a discoverability mecha‐
nism for people to better parse the data.

Atlas concentrates all the tribal knowledge held within all these data
silos and exposes it to the people searching for data. Users can
search for a column, a data type, or even a particular expression of
data.

Step 3: Prepare and Train Data
Data preparation is important at the data lake level during the inges‐
tion process. If data is not transformed and cleaned here, you will
need to do it downstream in other data pipelines, which can cause
inconsistency or duplicate workloads. You need to focus on prepar‐
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ing data to put into a data lake that’s accessible for one source of
truth; in effect, this allows your data teams to speak the same lan‐
guage about data and easily consume it. We can break down data
preparation into four main areas:

• Data discoverability
• Data preparation
• Data fusion (augmentation)
• Data filtering

Let’s take a closer look at each of these areas.

Data discoverability is important during data preparation because as
your organization grows, it can be very time-consuming to try to
identify what data is available. You need to make it easy for users to
log into a data portal and see what data assets they can access. It is
also critical that your users have a high degree of confidence in the
data that you are putting into the data lake.

Data preparation is not one step, but a combination of many steps.
For example, ingestion basically means consuming data from sour‐
ces. That’s the first step in data preparation, which is ensuring that
the data is coming in. It might be coming from multiple sources,
and you need to connect to all of them and get the data, which is
essentially raw, into a new system (data lake).

This data is not yet ready for direct consumption, which is where
sanitizing comes in. This is also known as data “cleansing,” in which
you remove redundancies and incorrect records and values.

Data fusion, also referred to as data augmentation, is when you fuse
data from one source with data from other sources. Implementing
good master-data management and data-preparation practices ena‐
bles users to more easily fuse disparate data sources. Then, having a
single shared repository of data and breaking down data silos means
that users can extract value from more types of data in a much
shorter timeframe.

Data filtering comes in during data preparation, when the data team
helps you filter out everything but the data that’s useful to you. Some
groups want only a subset of the data. For instance, if you’re work‐
ing in a big bank and you’re in the equities group, you might not
want to see bond data.
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This is especially important to companies that must comply with a
lot of data privacy or security mandates, like health care organiza‐
tions or large banks. For example, the latter has tightly controlled
structures, so data could be coming from the mortgage capital divi‐
sion, the equities division, the bonds division, or wealth manage‐
ment. Users might need different segments of data that come out
from the general data lake in which this data has been stored. You
typically need to filter based on your requirements. When you filter,
the datasets are refined into simply what you need, without includ‐
ing other data that can be repetitive, irrelevant, or sensitive.

The Importance of Data Confidence
Data preparation is all about sanitizing, filtering, and cataloging the
data to capture its lineage. Why do you need to do this? Because
you’ll always have issues related to data quality. How confident are
you in the data? Do you have a clean set of the data? Is the data com‐
plete and was it processed correctly? These are probably the most
important questions you’ll hear from users within your company.

Data preparation is all about ensuring the quality and consistent
timely arrival of data. The absolute last thing you want is the CEO
coming to you and asking, “Where’s my data?” or worse, “Where did
these numbers come from? The CFO thinks they’re wrong.”

That’s not fun, because then you must scramble and go through all
the different channels and groups that might have touched that data
before it got to the CEO.

Tools for Data Preparation
Hive Metastore is a service that stores the metadata for Hive tables
and partitions in a relational database. It then provides clients
(including Hive) access to this information using the metastore ser‐
vice API that will be used later, during SQL query processing.

Apache Atlas, as we’ve discussed, is a scalable and extensible frame‐
work for data governance including metadata management and
potentially also data usage and lineage. It allows enterprises to define
and classify data and build a unified catalog of governable data
assets. This unified catalog can be used by data analysts and scien‐
tists for their data analysis as well as by engineers and IT adminis‐
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trators in defining data pipelines. Security personnel can use it for
audit and compliance monitoring through data usage and lineage.

Apache Hive
Hive was originally designed to be a data warehouse on top of
Hadoop/MapReduce. It combined SQL-based language that
allowed people to query unstructured data with a metadata system
that allowed definition of tables and schemas on the data. Hive was
invented at Facebook, where these capacities were needed, as ana‐
lysts were having trouble accessing meaningful business questions
on ever-growing datasets. Two lead engineers at Facebook, Joydeep
Sen Sarma and Ashish Thusoo, who together eventually founded
Qubole, saw the potential in Hadoop to enable this capability and
created Hive as a result. They decided to build a SQL interface to
Hadoop, because SQL was the language most popular with their
data teams. Over time, SQL has become easy to combine with busi‐
ness intelligence (BI) software, and is a common gateway to even
simpler dashboard interfaces for analyzing data.

The main building blocks are the SQL language built on Hadoop
and the Hive Metastore, which is becoming the de facto schema for
the data lake. Today, Hive is used widely to query against cloud
storage to perform large-scale ETL processing against data.

The Hive Metastore has become a foundational component of
many enterprise data platforms today. The Hive Metastore provides
a layer of metadata for tables (such as schema and location) that is
used to query against different sources in the data lake. Even
though the number of SQL implementations has exploded, all of
them—Presto, SparkSQL, Impala, Drill, and so on—continue to use
the Hive Metastore as the central schema in the data lake.

How Hive Works

When Hive was initially built, MapReduce was already a very popu‐
lar processing engine. Here’s how MapReduce works: when you
give it a very large amount of data, MapReduce cuts it into small
pieces and then runs small amounts of computation on every one
of the pieces. Then it collects all the data and does what you’ve
instructed it to do. In essence, the “map” in MapReduce breaks up
the data, running some small amounts of compute on it, and the
“reduce” part collects all of that data and performs whatever task
you instructed on the collected data.
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MapReduce was not implemented by Hive, nor did it come with
Hive, but was something Hive could use to generate code. Still,
Hive itself is MapReduce agnostic. It was always possible to gener‐
ate code for other sorts of processing paradigms. And that’s what
ended up happening. Today, if you look at Hive, MapReduce is, to a
large extent, legacy and has been replaced by newer engines like
Spark and Tez.

A key benefit of Hive is scale. Hive can analyze very large amounts
of data at very high processing speeds using the Hadoop system
underneath.

A second, very distinctive benefit of Hive is enabling schema-on-
read. This allows you to store data in any format, allocate a schema
on the fly, and read it without having to store it.

One important difference between the data lake and traditional data
warehouses is that there’s no data loading and no data conversion.
You store data in whatever format it comes in, and then you define
how it should be processed and how it should be represented.

Summing up, here are some of the advantages of Hive:

SQL-like interface for distributed computing
Powerful SQL support for Hadoop/MapReduce workloads.

Dynamic user capabilities
Ability for users to define business logic in code with custom
user-defined functions.

Mature project and community support
Hive’s engine has a robust ecosystem built for data governance,
monitoring, and security.

Built for petabyte scale
Scalable engine that is built on top of the familiar Hadoop
framework.

Step 4: Model and Serve Data
The more you can empower users by lowering the barriers to access
data and the right engines to process said data, the faster you will
derive value from your investment in big data technologies.

In particular, moving to a self-service culture—as described in
Chapter 2—will free up time for your data scientists and engineers
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to begin using advanced analytics and AI tools such as machine
learning instead of worrying about provisioning infrastructure
resources. This shift is essential if you want to reap the competitive
benefits of big data in the data lake.

First, let’s examine some definitions and talk about some ways in
which you can use machine learning in the data lake.

Machine learning defined
Machine learning is a specific type of AI technology that enables
systems to automatically learn and improve from accessing data and
having “experiences.” Many experts today consider machine learning
to be a “productized statistical implementation.”

By creating a machine learning algorithm, data scientists are basi‐
cally teaching a machine how to respond to inputs that it has not
seen before, while still producing accurate outputs. Machine learn‐
ing is often used to learn from big data and forecast future events
based on that data.

Machine learning is becoming quite common, and many of our day-
to-day activities are affected and informed by it. Take Netflix, which
predicts what other movies or television shows you might like
depending on your past viewing history. Or Amazon’s famous rec‐
ommendation engine, which makes shopping suggestions based on
your purchasing patterns. These both utilize machine learning.

Apache Spark
As we mentioned earlier, Apache Spark is an open source dis‐
tributed general-purpose, cluster-computing framework.

Two of the biggest benefits of Spark are its scalability and speed of
processing. Until Spark came along, machine learning was not
practically scalable and took too long. Spark also accommodates
multiple languages. Developers can write in Scala or Java, and data
scientists can program in Python or R. There is ease of use in terms
of computational development for all the different data personas.

The open source community supporting Spark is large, which
means innovations are continuously happening and being shared
with the community. New features are constantly being added, and
the stability is increasing as well.
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The API layer of Spark, which helps users write applications, is very
intuitive. Spark offers those APIs in various languages, such as
Python and Scala; analysts can use SQL, and statisticians can use R,
and distributed R in the form of Spark R. The ecosystem is quite
rich.

Although the Spark core aims to analyze the data in distributed
memory, there is a separate module in Apache Spark called Spark
MLlib for enabling machine learning workloads and associated
tasks on massive datasets. With MLlib, fitting a machine learning
model to a billion observations can take a couple lines of code and
take advantage of hundreds of machines. MLlib greatly simplifies
the model development process.

Spark has several other advantages, among them:

Is designed for fast distributed processing
Spark’s engine enables massive amounts of data to be processed
quickly, in-memory or with batch.

Supports multiple languages
Spark allows users to code with SQL, Python, R, and Scala.

Offers a robust data science ecosystem
Spark allows you to easily use custom or prebuilt packages for
machine learning and advanced analytics use cases.

Handles a wide variety of workloads
Spark enables you to use streaming for near-real-time data
processing, batch processing, and running ad hoc queries
across various data sources.

Use cases for machine learning
Here are some of the ways in which machine learning can be used in
a real-world business setting:

Deploy AI-powered robotic process automation (RPA)
Cognitive RPA combines process automation with machine
learning. RPA by itself is good for basic, repetitive rules-based
tasks such as streamlining HR onboarding procedures or pro‐
cessing standard purchase orders. When machine learning is
added to it, RPA can do more sophisticated tasks like automat‐
ing insurance risk assessments. By augmenting traditional rules-
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based automation with machine learning, RPA software robots
(“bots”) can even make simple judgments and decisions.

Improve sales and marketing
Sales and marketing operations generate huge amounts of
unstructured data that previously went untapped. For example,
companies are using machine learning to do customer senti‐
ment analysis based on remarks made in social media or on
sales calls as well as forecasting sales and customer churn based
on detecting complex patterns of customer behavior that would
otherwise go unnoticed.

Streamline customer service
When coupled with other AI techniques such as natural lan‐
guage processing, machine learning and big data have the
opportunity to transform customer service. Already, customers
interact with companies using chatbots and virtual digital assis‐
tants, and the huge quantities of data that these interactions
produce that are ready for analysis boggles the imagination.
Such “virtual agents” today use machine learning algorithms to
parse customer questions or statements about problems and
provide a speedy resolution—problem-solving that gets better
as more time passes and more data is available from which the
system can learn.

Bolster security
Machine learning can also help companies enhance threat anal‐
yses and prevent potential security breaches. Predictive analyt‐
ics can detect threats early, and machine learning enables you to
monitor the millions of data logs from IoT devices and learn
from each incident how best to thwart attacks.

This isn’t to say that machine learning is without challenges.
According to the 2018 Qubole big data survey, many obstacles
impede the effective use of machine learning. The number one
obstacle is learning how to analyze extremely large datasets (40% of
respondents), followed by being able to secure adequate resources—
including expert staff (see Figure 6-3).
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Figure 6-3. Common challenges with machine learning

The Four Phases of a Developing a Machine-Learning
Model

According to Piero Cinquegrana, senior data science product man‐
ager at Qubole, there are four phases of building a machine learn‐
ing application:

Phase 1: Data prepping

The first phase is the responsibility of your data scientists. It
includes exploring the data, becoming acquainted with the data,
visualizing it, validating its quality (QA), and ensuring that the data
is the correct dataset to use for the particular problem you are try‐
ing to solve. “And even prior to this, of course, there’s a whole pri‐
oritization exercise and business validation,” says Cinquegrana.
“That goes without saying.”

Phase 2: Model building

A machine learning model is a mathematical representation of a
real-world process that you then can use to make predictions. The
task of model building also is the responsibility of the data scientist,

92 | Chapter 6: Tools for Making the Data Lake Platform



and involves selecting different “estimators” that can be applied to
the problem and then training the model.

Phase 3: Model validating

The next step is to validate the output of the model, typically with a
partner from the business side—the stakeholder who is seeking a
prediction. Does this prediction make sense? Does it defy expecta‐
tions? These are the questions you ask at the validation stage. This
is generally a very experimental, iterative phase during which you
go back and forth, changing queries, adding features, and trying
different models.

Phase 4: Model deploying and monitoring

This final exercise becomes one for the machine learning engineer,
who takes the validated model and moves it into production. Moni‐
toring the model is also very important. Suppose that you’ve put a
model for recommending ebooks on an ecommerce website into
production. How’s that recommendation model doing? How many
of the users are clicking the recommended products? Is it perform‐
ing as expected? Is the performance degrading or improving over
time? Those are the questions that a data engineer would be most
concerned about. Then, if the model is performing well, the ques‐
tions focus on how to improve it by providing more features—and
the cycle starts over in Phase 1 with the data scientist.

Tools for Deploying Machine Learning in the
Cloud
When it comes to deploying machine learning models, a number of
technologies have recently emerged to help provide data scientists
with more self-service capabilities that enable them to take their
models into a production pipeline.

Open Source Machine Learning Tools
In the open source world, a few of these tools that have gained pop‐
ularity recently are MLflow, Kubeflow, and MLeap, which focus on
cataloging and managing models that are deployed into production
for large-scale datasets.
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Managed Machine Learning Services
DataRobot, Dataiku, and H2O are managed services to help data
scientists build and train machine learning models for predictive
applications. These companies are also helping provide the new
wave of “Algorithms-as-a-Service,” which aim to provide point-and-
click solutions for machine learning across a wide variety of verticals
and data. These companies also provide capabilities to manage
models to deploy.

Cloud Machine Learning Services
Lastly, cloud providers are also beginning to offer solutions that
manage the end-to-end workflow for data scientists. Recently, AWS
released SageMaker, a tool that was designed to make machine
learning easier for novices to develop models. SageMaker does this
by providing common, built-in machine learning algorithms along
with easy-to-use tools for building machine learning models.

SageMaker supports Jupyter Notebooks and includes drivers and
libraries for common machine learning platforms and frameworks.
Data scientists can use SageMaker to launch prebuilt notebooks
from AWS, customizing them based on the dataset and schema they
want to train. Additionally, data scientists can take advantage of
custom-built algorithms written in one of the supported machine
learning frameworks or any code that has been packaged as a
Docker image.

Traditionally, data engineers have had to rework models built by
data scientists before embedding them in production-quality appli‐
cations. SageMaker hosting services enable data scientists to deploy
their models independently by decoupling them from application
code. SageMaker can pull virtually unlimited data from Amazon S3
to train.

Step 5: Extract Intelligence
What helps people understand data best is pretty pictures and
charts. That’s because we’re human and can take in only so much
information. It really is true that a picture is worth a thousand
words.

Databases are the cornerstone of how we store and interact with
data on a daily basis. These systems have been evolving and matur‐
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ing since the 1970s and support a wide range of business tools that
users deploy to digest and report on data. These databases work well
for structured data such as OLTP and OLAP workloads. At the same
time, the increase in volume and variety of data now requires data‐
base engines to run in more distributed ways.

Examples of these types of engines are Google BigQuery, Snowflake,
Redshift, Druid, and Presto. Because most of these tools are built
with SQL capabilities, you can plug and play your BI solution into
most big data technologies that support ANSI-SQL. Having these
tools connected to your data lake eliminates the huge wait time it
previously took to query data warehouses, reducing the time to get
access to information from hours or days to near real time or
minutes.

Visualization tools such as Looker, Power BI, and Tableau will
always be important. Even Excel on top of the data lake can be val‐
uable because now you can connect your BI tools directly to your
data lake—not just a traditional data warehouse—so that you can
perform advanced analytics that require immediate access to peta‐
bytes of data, data discovery, or the many other use cases we see
today.

Tools for Extracting Intelligence
The following are some tools that you can use to get actionable
intelligence from your data lake.

Looker
Looker is a BI tool that provides visualization capabilities and
comes with real-time analysis. Users can select different types of
visualizations from the Looker library or create a custom visual‐
ization, including bubble charts, word clouds, chord diagrams,
spider-web charts, and heat maps. Looker offers analytics code
blocks (Looker Blocks) with SQL patterns, data models, and vis‐
ualizations included. Although the blocks are prebuilt, they are
customizable and can be adjusted to the needs of the user.
LookML employs some features of SQL, but with improved
functionality.

Power BI
Power BI is a business analytics service by Microsoft. It offers
interactive visualizations with self-service BI capabilities, allow‐
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ing users to create reports and dashboards without having to
ask IT staff or database administrators for assistance.

Tableau
Tableau is a BI and data visualization tool with an intuitive user
interface. Users don’t need to know how to code, and they can
drill down into data and create reports and visualizations
without intervention from the data team or IT.

Getting Data Out of Your Data Lake
When you begin thinking of extracting data from your data lake to
drive business insight, you generally have two options: canned
reports and ad hoc queries.

Canned reports are typically executive reports that are regularly
generated. Whether they’re created every morning or even every
hour, a pipeline runs a set of predefined data operations that usually
results in a PDF or dashboard. Canned reports tend not to change
very often, because they are really what runs the day-to-day busi‐
ness.

Ad hoc reports involve users asking general questions of the data,
such as “I have a customer on the phone, what’s happening with his
order? When will this product arrive in inventory?” and so on.
These reports are usefuly when you’re trying to solve a problem at
the moment, but don’t necessarily need to be persistent like a daily
or weekly report.

Presto for Ad Hoc Analytics
One of the key personas in a large company’s data team is the data
analyst. Typically, the job of a data analyst is to explore data, gener‐
ate reports, and interpret how the business is doing. Usually, a lot of
data comes in. It might be in real time, it might be on an hour’s
delay, or it might be on a delay of a day or more. It doesn’t matter.
The job of the analyst is to analyze the data to reveal various metrics
about the business.

Sometimes, an analyst needs data about something that is happen‐
ing now. For example, a shared-ride aggregator like Lyft might want
to know how one of its ride categories is doing in Seattle today
because it did a promo there. Or, it may want to do a little bit more
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historical analysis that investigates which category of service differ‐
ent customer demographics like. For example, are college students
going for the cheap cars, are they going for the midsized cars, or are
they going for the SUVs?

This is where Presto shines compared to Spark and Hive. Recall in
Chapter 3 that Presto is built for running fast, large-scale analytics
workloads distributed across multiple servers. Presto is built for
SQL, which is the common skill among analysts. In fact, it is an
imperative language that helps analysts transition to Presto from
other databases. They do not need to worry about the underlying
technology or the scale of the system to handle big data analysis.

When it comes to query runtime performance, Presto will not have
the millisecond response offered by some of the traditional data‐
bases out there (e.g., Oracle or Greenplum with DB2), but it is gen‐
erally considered faster than Spark and Hive. Presto also shines for
common analytics ETL operations, such as large joins and table
aggregations. All in all, there is a good chance that Presto will work
better with more business tools than the other engines. For these
reasons, if you must move away from one of the more traditional
mainstream databases to something that is built for the data lake,
Presto is the easiest option.

Because of its support for federated queries, Presto fits well into any
ecosystem, as depicted in Figure 6-4. It works well with Hive Meta‐
store, HDFS, relational database service, and cloud storage. It also
integrates with other data stores like MySQL, PostgreSQL, Mon‐
goDB, and Oracle. This helps analysts quickly bring together ad hoc
data sources for impromptu analysis without the need for an ETL
phase.

Tools for Deploying Machine Learning in the Cloud | 97



Figure 6-4. Operational dataflow using Presto in the cloud

Because you have a lot of data, speed is definitely important. You
probably don’t need subsecond speeds, but you definitely need sub‐
minute speeds. And because you have hundreds of terabytes of data
and you want subminute speeds, there’s an assumption that you
would want to use a cluster of machines to do this job. And Presto
can do the capacity planning to make it work well.

On top of that, Presto has also been adopted by large companies like
Uber, Lyft, and Netflix. This means that it is also battle hardened,
not just at Facebook, but at some of the other top technology com‐
panies in the world. There is therefore less of a burden on other
companies to do quality and stress testing. The technology world is
doing that for us.

Ad Hoc Versus Canned Reporting

As we’ve discussed, the data lake is meant to work for both struc‐
tured reporting—often called prepackaged, prebuilt, or canned
reporting—and ad hoc reporting, in which you’re searching for data
in an unexpected or unique way. Data lakes are especially good for
ad hoc reporting—the spontaneous SQL or search queries to which
you wouldn’t know how to tune your relational database to respond.
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The type of report depends on the type of user

Different users will prefer one type of report over the others. Users
without particular technical expertise or who lack SQL experience
generally are given the prebuilt, canned reports and given access to
drill-down reports you get from popular visualization tools. Typi‐
cally, the higher you go in an organization, the more users will want
these simple canned reports that show only high-level views of data.

As you go down the organizational hierarchy, you will want to
deliver more elaborate reports—still canned—that are consumed by
mid-level management and some data analysts. These kinds of
reports go into more depth, into “what if ” varieties of ad hoc search‐
ing on a limited dataset.

Finally, some data analysts will want to do their own ad hoc query‐
ing in SQL for ad hoc reporting.

The challenges of dealing with ad hoc queries

There are two particular challenges when it comes to ad hoc queries:
ensuring quality and balancing speed of reporting with speed of
searching.

The first challenge is data quality. Organizationally, you need a for‐
mal program for evaluating data quality. After all, the reports will
only be helpful if the data is accurate, up to date, and meaningful. To
set up a program like this, you would need to inject quality checks
into your ETL processes. You might do random checks of certain
datasets or metadata.

The other challenge is balancing speed of reporting and speed of
searching. Typically, the data analytics team that receives requests
from users monitors the various types of requests. If a number of
requests for the same type of query grows, you have an obvious need
to create a standardized report based around that query. It could
even become a separate dataset prebuilt for that query that is faster
to access and therefore can satisfy those requests quickly.

This will reduce your ability to do additional ad hoc searching on
that dataset, but it increases speed and helps you avoid having to do
additional programming to deliver similar reports to users over and
over again. And, ultimately, you want to shift users as far as possible
from having to ask for ad hoc reports to receiving prepared reports.
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The need for competence in analytics reporting
In analytics reporting, you also need what we’ll call competence. The
three main areas of competence when it comes to analytics are:
data-enablement competence, decision-support competence, and data-
excellence competence. Let’s look a bit more closely at each of these:

Data-enablement competence
This means providing platform information, integrity, and data
and enterprise integration in a way that ensures the data will
always be available and reliable. This is critical to a smooth ana‐
lytics reporting function.

Decision-support competence
For your team to be competent at decision support, you first
must acknowledge that there are two sides to successfully apply‐
ing data science. One is that the data scientist is expected to be
knowledgeable about implementing various mathematical mod‐
els to detect patterns in the data. The other side of it is that data
scientists also need to understand the business, or they won’t be
of any real help to the bottom line.

Data-excellence competence
What happens with data in the end is very much a function of
how well and how tight the data-excellence processes are. These
processes include what the data team—data engineering in par‐
ticular—is doing to ensure that the data is of the highest quality
so that business decisions can be made using it.

Structurally, this means that you can organize your data teams in
two different ways. The first way is to have data scientists work
closely and directly with users within your different business units
or with executives in the C-suite. To do this, the data scientists must
both understand the business’s needs as well as use their experience
and expertise to deliver insights to the business based on big data.

Alternatively, you could put the data scientists into two different
groups by function. One group would primarily interact with busi‐
ness users to gather their needs. Then, they would take those needs
to the other group, who would do the actual data science. We think
the former is a much healthier way to go, and thus we recommend
that businesses go that route.
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Step 6: Productionize and Automate
At this stage, you have your data lake built. You are focused on mak‐
ing it into a production-ready resource and improving its operations
through automation.

Here’s how you’ll know that your data lake is production ready:

• Your users have clearly defined expectations and specific goals
that they’ve prioritized for using the big data in your data lake.

• Your data lake possesses the security and governance required
of any enterprise-class infrastructure or resource.

• You can scale and add new storage, compute, and network
capacity quickly that exactly match your needs at the moment,
with no waste.

• Your data team has the required skills to support the data lake
throughout the data life cycle.

• You can efficiently perform incident response, manage trouble
tickets, provide training, and in general deliver all the support
functions required of an enterprise-class operation.

• You have automated as much as possible to reduce errors and
the stress on the data team.

Tools for Moving to Production and
Automating
Now that you are ready to put your data lake into production and
automate it, you will need tools. Happily, a number of great tools
have emerged so that you don’t need to build them yourself. Specifi‐
cally, you can deploy workflow schedulers and ETL managed serv‐
ices from the open source world to help you with this final stage of
building your data lake.

Open Source Workflow Schedulers
Apache Airflow is an open source tool for orchestrating complex
computational workflows and data-processing pipelines. An Airflow
workflow is designed as a directed acyclic graph (DAG). When
using Airflow to author workflows, you divide it into tasks that can
be executed independently.
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Oozie is a workflow scheduler system to manage Apache Hadoop
jobs. Oozie Workflow jobs are DAGs of actions. Oozie Coordinator
jobs are recurrent Oozie Workflow jobs triggered by time (fre‐
quency) and data availability.

Azkaban is an open source workflow scheduler created by LinkedIn
that aims to reduce Hadoop job dependencies. It is a batch job
scheduler that allows developers to control job execution inside Java
and especially inside Hadoop projects.

Pinball is workflow management software developed to manage big
data pipelines. It is available as open source.

ETL Managed Services
ETL is a process for preparing data for analysis. It is most com‐
monly associated with data warehouses, but it can also apply to data
lakes. Extract involves extracting data from homogeneous or hetero‐
geneous sources. Transform processes data by transforming it into
the chosen format for analysis. Finally, load describes placing the
data into the final repository—in our case, the data lake. Following
are three tools that you can use to manage your ETL tasks:

Informatica
A widely used ETL tool, Informatica’s PowerCenter helps you to
extract data from multiple sources, transform it to the right for‐
mat for your data lake, and load it into the data lake.

Pentaho
This is BI software that provides data integration, OLAP serv‐
ices, reporting, information dashboards, data mining, and ETL.
Pentaho enables businesses to access, prepare, and analyze data
from multiple sources.

Talend
This is an open source data integration platform that provides
various software and services for data integration, data manage‐
ment, enterprise application integration, data quality, and cloud
storage.

Apache Airflow
As noted, Apache Airflow is an open source tool for orchestrating
complex computational workflows and data-processing pipelines.
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Airflow workflows are designed as DAGs. When authoring a work‐
flow, you need to consider how it could be divided into tasks that
can be executed independently.

Apache Airflow was built because traditional workflows either
relied on Cron or a fixed series of serialized commands. Airbnb
needed to manage the tasks associated with multiple big data opera‐
tions. It wanted to provide its users with a better system for manag‐
ing task workflows, and Jenkins, the existing tool for doing this, was
difficult to manage.

Airflow ultimately provides a much easier way of chaining complex
interdependent tasks, and also has the advantage of using Python.

As both a scheduling tool and task workflow automation system,
Airflow’s lightweight, Python-based service uses workflows made of
DAGs for tasks. It has an intuitive user interface and is very easy to
scale. All the heavy lifting is done by engines, and it can manage
complex workflows such as these:

• Building data ingest and monitoring pipelines
• Deploying machine learning models
• Building data-reporting pipelines

Qubole found that more than a third of its customers use Airflow,
typically to more easily build and manage data workflows and
orchestrate extremely complex data pipelines. Airflow has a strong
and growing open source community.

Best practices for using Airflow include the following:

• Use multiple Airflow instances for dev, test, and production.
• Run Airflow in Coordinated Universal Time.
• Control who can deploy DAGs. Isolate pipelines by team by

using multiple Airflow instances.
• Ensure that heavy ETLs are done on clusters, not on Airflow’s

instances.
• Don’t immediately assume that you need an Airflow cluster. A

single instance is generally easier to maintain than a dis‐
tributed cluster.

• Understand the difference between the web server, scheduler,
and workers.
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CHAPTER 7

Securing Your Data Lake

Security architectures in the cloud are very different from those on-
premises. Today, the cloud is reasonably secure. But it has taken
some time to get here.

When the public cloud began, it lacked security functionality. For
example, AWS EC2-Classic instances received public IP addresses. A
few years later, Amazon introduced its virtual private cloud (Ama‐
zon VPC), which included private subnetting and boundaries. Since
then, the cloud has matured from typical compute in which security
is a minor consideration to an environment with the extensibility
and functionality that allow a security professional to more reasona‐
bly protect infrastructure.

We’ve seen three generations of cloud security thus far. In the first
generation there was little—typically just ad hoc—security. Then,
the second generation introduced virtual private clouds and third-
party services to enhance security, such as application firewalls. The
third generation has included logging approaches like setting up
Lambdas to trigger on certain events and AWS Gatekeeper. There is
room for a fourth generation to improve cloud security even more.

It’s very important to look at the security primitives differently than
those of on-premises setups, and to adopt those security primitives
to create a secure data infrastructure.

When securing a data lake in the cloud for the first time, security
engineers need to:

• Understand the different parties involved in cloud security.
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• Expect a lot of noise from your security tools as well as the big
data frameworks and solutions that your team needs to use.

• Carefully establish privileges and policies on your data based on
what you’re trying to protect and from whom.

• Use big data analytics internally to inform and improve your
organization’s security capabilities and decision making.

We will explore these considerations in the rest of the chapter.

Consideration 1: Understand the Three
“Distinct Parties” Involved in Cloud Security
Ensuring security in a cloud-based data lake is a relatively new sci‐
ence; we’re still figuring it all out. But when your data lake resides in
the cloud, the first thing you need to realize is that you still must
think about security. Yes, your cloud vendor has broad security
responsibilities, which we examine later in the chapter, but you do,
too. And if you use a cloud platform for big data like Qubole or
another vendor with which to build your data lake, you have three
organizations that must work together to ensure that your data and
systems are protected.

There’s you, the company that is building a data lake. There’s the
cloud platform owner. And then there’s the cloud provider, which
not only supports the platform, but also provides the tools and
resources that allow the customer to store the data that is relevant,
and do the processing required to analyze that data.

You can’t just depend on the cloud provider to protect you. You
must rigorously practice safe access control and safe security
throughout your organization. And you need to question whether
the cloud platform provider has sufficient security in place as well.
You need to ask the tough questions. How do I know my data is
secure? How can I ensure that the compute resources are safe?

Here are your responsibilities for security in the cloud:

• Customer data
• Data encryption
• User management
• Infrastructure identity and access management
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• Definitions of users’ roles and responsibilities (perhaps using
personas)

Here are the cloud platform vendor’s responsibilities for security in
the cloud:

• Secure access to the data platform
• Secure transport of commands
• Third-party attestations or validations: service organization

controls, HIPAA, PCI
• Operating system firewall configuration
• Metadata security

And, finally, here are the cloud provider’s responsibilities for secu‐
rity in the cloud:

• Storage
• Availability and redundancy
• Compute
• Networking

Security Functionality That Your Cloud Platform Should
Deliver

Ensure that your cloud platform provides the following security
functionality:

• Strong compliance and audit logging
• Assurances that all data resides in user cloud accounts
• Strong data encryption throughout (at rest and in transit)
• Flexible and granular role-based access control
• Transparent availability and performance reporting
• Secure software development life cycle
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Consideration 2: Expect a Lot of Noise from
Your Security Tools
Security tools are notoriously “noisy.” They generate a lot of false
positives or alerts that are really about nothing.

A 2018 survey by Advanced Threat Analytics found that nearly half
(44%) of respondents reported a 50% or higher false-positive rate.
Of that 44%, 22% reported a 50 to 75% false-positive rate, and 22%
reported that from 75 to 99% of their alerts were false positives.

Security mechanisms such as intrusion detection systems, file integ‐
rity tools, and firewalls tend to generate a lot of logs. Take the fire‐
wall, for example. It has rules programmed in to either deny or allow
traffic. It creates logs for every decision. Intrusion detection systems
are also rules based, and they’re looking for traffic anomalies,
explains Drew Daniels, VP and CISO of Qubole. They’re saying,
“‘These are the things that I care about, and if you see any of these
logins, take action.’” But, he says, they still generate “volumes and
volumes of data.” And there are other security mechanisms that gen‐
erate logs and have the potential to alert you when something
unwanted or unknown occurs.

Today, 80% of security tools are rules driven. But we are beginning
to see tools that are AI and machine learning aware. It’s now possible
for companies to take these rules-based solutions and learn from
what they find. More important, they can correlate events and alerts
to ease incident response.

Additionally, many security professionals dream of a “single pane”
that gives them insight into their entire infrastructure instead of
having to log in to multiple security tools to figure out what is going
on. Having a tool that links or uses data from multiple sources
would satisfy this desire.

The reason that rules-based engines are not ideal is because an inci‐
dent responder must collect all the relevant log data and then put it
in the correct order. Only then can security professionals determine
how severe an incident was and how to best address it.

It can take up to an hour to analyze whether something is really an
incident. And if you’re getting 20 to 30 alerts per day, you’re going to
have two or three people doing nothing but chasing incidents.
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Because most of those reports end up being nothing, that’s quite a
lot of noise, and a real problem.

Consideration 3: Protect Critical Data
Security professionals need to first consider what they are trying to
protect, and from what. They don’t think in terms of preventing
users from accessing data; instead, they view security in terms of
what’s sensitive, and how they can best keep the company’s data safe
and secure. After all, data is increasingly a business’s most valuable
asset.

A best practice in the cloud (as when on-premises) is to apply the
principle of least privilege: you don’t want to deny access to data if
someone needs it to do their job, but you do want to restrict that
person’s access to only the data they need to carry out that job.

How best to allow access? That depends on the organization. For
example, Qubole has a policy that if you’re in the office, you must
use multifactor authentication (MFA) and you must change your
password every 90 days. When you’ve used MFA to log in, it’s valid
for 24 hours. Then you need to sign in again.

However, when you’re out of the office (remote), your MFA login
will expire after 8 hours. Some companies are even more restrictive
and don’t allow personnel to access resources remotely without the
use of a virtual private network (VPN) connection to ensure that the
data transmitted and received is properly encrypted.

“Some of our most successful customers set up roles and groups.
Some also use SAML [Security Assertion Markup Language] for
extra protection,” says Daniels.

A good first step is to create roles, decide what access rights belong
to each role, and then assign users to the correct roles. Sometimes,
you can have an entire group of users with the same access rights; at
other times, you need to allow access to certain data or systems or
tools on a case-by-case basis. But using the principle of least privi‐
lege is critical throughout.

Because certain users need to work with multiple systems and use
cases, there can be difficulties. You want to make sure that you
understand what access each person needs to be able to do their job.
Then you want to provide that access, but not overprovide it. Many
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companies dictate access rights by role—for example, data scientists
have certain rights, and data analysts have others. Or you can assign
rights by functional team. You can tailor the specifics to your con‐
text, as long as you’re operating on the basis of the principle of least
privilege.

“For example, you don’t necessarily want employees from marketing
or sales accessing corporate financial data,” says Daniels. “So, you
can limit their access based on their function.” Following from this,
you might want to go quite granular on what you allow users to do
within a system or with data. You could allow your data analysts to
use existing clusters, but not to configure or create new ones. In
such a case, says Daniels, “data scientists may want to start certain
clusters and tune them to do something different.”

Many of today’s cloud-native tools allow for remarkably granular
controls. Fundamentally, it is about protecting the business’s data.
After you get past that, you should be making sure that the right
configurations exist for the right users. Tools like Apache Ranger
(discussed in Chapter 6) make this possible.

In a typical business environment, the data team will sit down with
whoever needs data—perhaps the finance team—and they’ll capture
requirements from that team. What do they need to see? What do
they need to do? And then the data team creates a role that grants
certain rights to financial employees. They might be able to look at
the last two quarters of financial results, but they can’t go in and do
a custom query or ask questions that haven’t already been structured
in a report or a notebook. Then, if users need more access than that,
they can come to the data team, open a support ticket, and make
their requests, which can be decided on a case-by-case basis.

Consideration 4: Use Big Data to Enhance
Security
The fourth and final issue is this: instead of simply serving the needs
of the other functions in the organizations, why not take advantage
of all of these tools—big data, advanced analytics, AI, machine
learning—to improve security operations?

“Much like other areas in technology, security generates a lot of data,
and one of my passions is trying to figure out how I can take a look
at that data, combine it with other datasets, and be able to find
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things that I might not otherwise be able to discover,” says Daniels.
“A lot of these tools generate terabytes of log data every day, maybe
even more depending on how large the infrastructure is and how
widely the tool is deployed.”

Companies need to find ways to leverage all this security data, and
use data science and machine learning to learn how to make their
organizations more secure. This is the dream of incident response
leaders, who, as mentioned earlier, currently spend far too much
time per incident, which is both inefficient and costly.

Very few people, if any, are doing this today. Managed services secu‐
rity operations centers (MSSOCs) are trying, however. With an
MSSOC, you have a third party adjusting all of the logs and doing
the analysis for you. Often this raises concerns. Does this MSSOC
support your tools and data? How do you send them your data?
What are they doing with the data? Who owns and controls the
data?

From a security perspective, this is something that many CIOs or
CISOs worry about. “I don’t like when somebody is saying, ‘Give me
all your data. Oh, here’s your incidents,’” says Daniels. What are they
potentially missing? Because it’s completely outsourced, you don’t
know what that is, and you don’t know how bad it might be.

“I think the second thing is security professionals are often para‐
noid,” says Daniels. “They want to know how the lasagna’s being
made.”

Right now, the most common way that companies manage security
is by sifting through all the data that their security tools generate.
But the more tools they use, the more difficult that becomes.

“We at Qubole have started taking the approach of mandating that
our security vendors dump all that data in a common format and
location so that we can take it and figure out what issues might need
our attention,” says Daniels.

When you get to this advanced stage of security, you’re not just
focusing on data governance, but are also proactively seeking out
use cases around fraud detection, or hacking attacks, or easier user
administration and management.

“Typically, security teams are understaffed and underfunded,” says
Daniels. “So I get a lot of people coming to me asking, ‘How did you
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do it?’ They’re extremely thrilled about the possibility of doing this
themselves.”

Qubole is close, he says. It has been working with its vendors to get
security data outboarded to Amazon S3 so that it can ingest it, “and
we now have three or four of those data sources ready to be inges‐
ted,” he says. “I’m excited at the prospect.”
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CHAPTER 8

Considerations for
the Data Engineer

The data engineer is the person on the data team responsible for
gathering and collecting the data, storing it, performing batch or
real-time processing on it, and serving it via an API to data scientists
so that the data scientists can easily delve into it to create their
experiments and models. Data engineers are often the first team
called on when things break, and the last to get credit when things
go well, yet they are arguably the most critical component to opera‐
tionalizing the data lake.

Data engineers are primarily responsible for managing the volume,
variety, velocity, and veracity of the data in the data lake. By properly
managing these “four Vs,” data scientists and data analysts can more
easily find value in the data—the fifth V.

With organizations wanting to embrace the data-driven model, data
engineers are constantly under pressure to learn more technologies
and apply them to their development processes. Today they must
understand distributed computing, good data warehousing technol‐
ogies, and the difference between transactional modeling and ana‐
lytic modeling, such as in OLAP versus OLTP systems.

To add to these many hats, data engineers also must be quality engi‐
neers. They need to monitor the quality of their data, the shape of
their data, and their metadata statistics so that they can quickly spot
a problem and correct it.
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The upshot: today, data engineers need to master almost an entire
development methodology to do their jobs well.

Top Considerations for Data Engineers Using a
Data Lake in the Cloud
Most organizations decide to build a data lake because their business
and data needs are growing beyond reporting off their transactional
databases—the ones that run their businesses—and that simply isn’t
working for them anymore. Although it’s fairly easy to run canned
reports off such systems, ad hoc reporting is trickier. As your data
expands and your users become more sophisticated, delving into
complex analytics and machine learning makes clear that the next
evolution of the data architecture is to build a data lake.

Protect Your Users
Indeed, the first sign that you need to build a data lake is that your
data consumers begin complaining. This can manifest in different
ways. Perhaps analytics queries are causing issues with the transac‐
tional databases, or data scientists want to begin building models,
but they can’t get the data out of the transactional stores.

What organizations typically do at this point is take dumps of their
data out of their transactional databases and put them into the raw
storage of a data lake. This is where data engineers become critical.

Data engineers often write jobs to pull tables out of transactional
databases and break them down into JSON, which is then stored in
the raw partitions of the data lake. From there, data scientists could
use Spark, or analysts can use Presto and Hive, to analyze the data.

Although this works for a while, using a text format is a magnitude
slower than using an optimized format. As your data consumers
request that their data be served faster and faster, data engineers are
tasked with building data pipelines that convert data from raw to
optimized. The two dominant formats data engineers use currently
are ORC and Parquet. (Although others are emerging, they have yet
to gain widespread adoption.)

However, depending on how your tables are structured, your data
consumers can become confused if you’re constantly changing for‐
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mats. Data engineers thus need to somehow isolate their users from
these optimizations and schema evolutions.

Ensure That Data Governance Is in Place
Now, let’s talk about data veracity in a cloud-based data lake. After
all, data quality assurance is one of the chief duties of a data engi‐
neer. When working with a data lake in the cloud, data engineers
need to understand the shape of the data in their pipelines. They
need to understand, based on columnar data, what the minimum,
maximum, and averages of the data are. This will help them catch
outliers in the data, or whether something has gone awry during
data conversion. There are a lot of tools for this functionality.

Many DataOps teams will run statistical analyses on the data and
emit the results to a monitoring tool, such as Datadog or LogicMo‐
nitor, that alerts the team when an error or outlier is detected. There
are several great open source data profilers available.

Data engineers are also responsible for managing the data life cycle
as part of data governance. This means that they work with business
analysts, users, and data scientists to create a data life cycle strategy,
determine each dataset’s time to live, and find the right storage
media for it (hot, warm, or cold) for as long as it needs to be stored.
Public cloud platforms offer a range of data storage options to meet
businesses’ storage needs.

Typically, as data ages, it becomes less and less valuable, although
there are regulations that require keeping certain types of data for a
specified number of years. For example, the HIPAA health care data
mandate requires that affected businesses retain patient data for at
least six years from creation date or last effective date, whichever
happens to be later. Financial services firms need to keep data for a
minimum of seven years in case of an audit. Data engineers need to
stay on top of these and other regulations.

Although most businesses hate deleting data, most are able to artic‐
ulate when their data isn’t useful, whether that’s after 30 days, 90
days, or even a year, and do away with it. All that is part of the busi‐
ness’s data governance policy, as overseen by the data engineer.

Although security is everyone’s responsibility, data engineers are
part of the security process and should help to find a solution that
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minimizes risk to the organization yet doesn’t critically impede the
needs of the data-driven organization.

Designate Areas for Raw and Optimal Data Storage
In the raw storage area, the data should remain as is, without any
transformations. This area is critical to the overall data lake architec‐
ture because it provides the ability to rebuild downstream tables if
needed due to some kind of catastrophic failure. It also enables for‐
ensics to determine whether and when data changed or an error
occurred. The optimized data area is where you want to put your
data that has been cleaned, scrubbed, transformed, and democra‐
tized for the end consumers. You need to create both areas in your
data lake if you want to successfully mine the data for value while
keeping lineage in order and quality assured.

Considerations for Data Engineers in the Cloud
Data engineering is also responsible for properly democratizing data
in the organization. This is best done in the cloud.

Democratize the data
Data democratization can be done several ways. Many organiza‐
tions will probably have a data dictionary for data exploration,
whereas more advanced organizations will create automated
metadata management and data lineage tools, which provide
more context around the data.

Promote ease of use
It’s imperative that the data lake be easy to use for downstream
consumers. Data engineers are responsible for understanding
the needs of the consumers and designing the data lake in a way
that maximizes a downstream consumer’s productivity. An
example of this is implementing views on tables so that down‐
stream users are insulated from upstream schema changes.

Enable automation
A good automation tool is worth its weight in gold for a data
engineer. It’s important that the tool be easy to use, scalable,
extensible, and flexible. It’s also important that the tool have a
notification system in the event of a missed SLA or pipeline fail‐
ure. Our personal favorite is Apache Airflow.
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Summary
In short, the goal of advanced data engineering is to democratize
data in the organization so that nontechnical users can consume and
use data efficiently without having to delve into the technical parts.
You could say that as data engineering becomes more advanced, the
focus becomes less technical and more user oriented. This is coun‐
terintuitive and seems backward, but it’s true.

The data engineers’ basic responsibility is to enable the rest of the
organization to consume data in an easy, efficient, and confident
manner. This could involve taking data scientists’ machine learning
models and developing a smartphone app that allows marketing
professionals to perform ad hoc querying of real-time sales data. Or,
enabling data analysts to develop an interactive dashboard to iden‐
tify areas of business opportunities or inefficiencies. Or, perhaps
creating an application that allows product managers to do A/B test‐
ing against historical data to determine the best functionality to put
in a new product design. A data engineer could build a portal
through which external customers could view an account, run sce‐
narios, and identify key data points in a safe and secure manner.
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CHAPTER 9

Considerations for
the Data Scientist

Data science is an interdisciplinary field that uses scientific methods,
processes, algorithms, and systems to extract knowledge and
insights from data in structured, semi-structured, and unstructured
forms.

Data scientists live at the intersection of science and statistics. They
care about the fifth “V” of the “five Vs” of data science: value. The
results of their labor are usually used to drive business decisions and
perform predictive problem solving. For example, a data scientist
might analyze a broad range of customer data from multiple sources
—structured and unstructured—to attempt to predict when a cus‐
tomer is at risk of churning.

Pradeep Reddy, a solutions architect at Qubole, says, “If I’m a tele‐
com provider, if I can actually predict a customer who will churn
three months from now, I could take some corrective actions.” He
continues: “I could then send him a flier or offer a promotion in an
attempt to retain him or her.”

It’s important in such cases for data scientists to identify the “white
spaces” in their data. For example, if you depend on geolocation data
to power an application that tracks consumer behavior, you are at
the mercy of whether a consumer has opted out of geolocation. Sup‐
pose you are collecting this data from customers’ smartphones—
you’re fine until they power down. Then, you don’t know where they
went. What they bought. Where they ate lunch. There’s a hole in
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your data. That’s when you turn to third-party data providers, to
find the right data and fill those holes. Otherwise, you make the
wrong assumptions—and poor decisions result.

Data scientists are frequently skilled at a lot of things. They can
often put on the hats of data engineers and perform their duties.
They are also experts at statistics and can design a statistical model
that extracts value out of data.

Of course, there is no perfect data scientist. Some are very skilled at
statistics, others are proficient at engineering, and still others excel
at execution. It takes a collaborative approach to extract maximum
value from the data. “In the Qubole customer base, the ones who
have been most successful at executing data science are the ones
who have embraced a collaborative culture. It is a team effort,” says
Reddy.

In fact, your data team should include data scientists, data engineers,
web developers, and product people as well. “You’ve got to leverage
all your functions to inform your data science program,” says Reddy.

Data Scientists Versus Machine Learning
Engineers: What’s the Difference?
It’s a truism that technology is easy; it’s the humans that are difficult.
It’s also true—as the notion of DataOps brings home—that data
teams do their best work while collaborating. Having said that, there
are certain cultural issues around the two main personas, data scien‐
tists and machine learning engineers, that you need to know about
when attempting to operationalize machine learning in the data
lake.

First, be aware that data science is an evolution of the analytics func‐
tion. Companies have historically tasked data scientists with build‐
ing advanced models and statistical models to understand data, but
they also have been tasked with building products out of data that
were used in production. Data science traditionally, then took
advantage of the skills of analysts to gain advanced insights from
data but also of data engineers to build products that gave the busi‐
ness a competitive advantage.

In the mid-2000s, big data technologies emerged, which led busi‐
nesses to define a new data role: the machine learning engineer.
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As data scientists increasingly focused on experimentation, busi‐
nesses needed a new role that was specifically tasked with building
models in production. In some cases, data engineers can do that, but
often they don’t have the statistical knowledge to understand what’s
going on with the models. Thus, today many businesses hire
machine learning engineers, which are software engineers who spe‐
cialize in deploying machine learning applications that use Hive,
Hadoop, and Spark technologies.

Today, the data scientist is primarily tasked with doing experiments
with data. Because of the way models work, it’s a trial-and-error pro‐
cess. They try one model, they try one feature, they try one algo‐
rithm, until they hopefully arrive at an optimal combination. Data
scientists are experts at that process. They also are expert at story‐
telling. They require strong communication skills to work with
product managers and business users to formulate hypotheses and
test them using data and the models. Often, you can recognize data
scientists by the tools they use: R and R Studio or Python and
Jupyter Notebooks.

After creating models, today data scientists typically hand off the
code—or, as a best practice, collaborate with the machine learning
engineers—to productionize the model.

What does productionizing a model mean? The model the scientist
data created is not optimized for production. That is, it might not
scale as the business requires, it might not have logging or fault-
tolerance capabilities, and it might not be modularized so that it can
be embedded into an application.

Machine learning engineers come in and restructure the code.
Sometimes, they rewrite it into a different, more complex language
that performs better, such as Scala, Java, or C++. The tools data
engineers prefer to use for doing this are typically integrated devel‐
opment environments (IDEs) such as IntelliJ IDEA or Eclipse,
which are very different from the notebooks that data scientists use.
An IDE’s output generally is a library or module that is deployed
into an application.

In businesses that are less advanced along their big data and
machine learning journeys, data scientists tend to wear many hats.
Indeed, even data scientists in large organizations, according to
interviews and expert estimates, spend from 50% to 80% of their
time on the tedious aspects of collecting and preparing data—what
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data scientists call data wrangling—before they can mine it for useful
insight. Although tedious, collecting data and extracting features
determines the final quality of the model built. “Garbage in, garbage
out” is a common adage to describe a model constructed with bad
data.

In fact, most organizations are still struggling with how to organize
their data teams—specifically, with dividing the tasks between data
engineers and data scientists. “Should there be two distinct func‐
tional areas? Or should they be virtual, shifting teams, in which
there is a sharing of best practices among them? Should you teach
data scientists how to do basic data engineering and ad hoc analyt‐
ics? Or is that something they shouldn’t waste their time on?” asks
Mohit Bhatnagar, senior vice president of products at Qubole. “This
is not fluff. These are very real problems that people are grappling
with,” he says.

Data Scientist Use Cases
Use cases for data scientists can be categorized as either batch or real
time. A batch job means that you don’t have a person waiting for the
model to be scored, and it doesn’t have strict SLAs. There’s nobody
waiting on a website or a mobile app who needs to be served a pre‐
diction in real time. This means that you’re running a scheduled job
periodically: once per hour, per day, or per week. In many such
cases, the data scientist can do it themselves if they know Spark or
some other production-level engine.

In a batch scenario, data scientists will create data transformations
using a database or perhaps Python, but if the dataset is not that
large, they don’t really need Spark, so they can do it all themselves
easily.

If, however, your dataset is large, Spark is optimal. Writing a model
in Python could end up causing bottlenecks because Python doesn’t
scale in production. A machine learning engineer is going to need to
be involved at that point.

Alternatively, if data scientists know how to write in PySpark or
even Scala, you’re much better off. They can write a SQL CREATE
model. They can do more advanced data processing and schedule it
via notebook or a job and using a cloud platform like Qubole or
Databricks or EMR to get it to production.
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Under a real-time scenario, you’re focused on delivering a model
that serves a prediction to a person—a customer or employee—who
is waiting for it, in real time. Suppose that you’re Amazon. You have
strict requirements for your model to serve search predictions very
fast; otherwise, the customer is not going to return to the website.
The pipeline for your model has an entire set of requirements that
are very different from a batch job that doesn’t have a person waiting
on the other side. In that case, most likely you will need an engineer
to specialize in squeezing any sort of inefficiencies in the code
because the data scientist doesn’t specialize in that.

In an ideal world, you would want a platform administrator or a
platform engineer who understands all of these intricacies so that
you can plan ahead for all the possible use cases. Depending on
whether you want to do batch deployment or real-time machine
learning applications, the infrastructure is going to be very different,
as are the skillsets required. If you have planned ahead of time, you
can choose the appropriate platform and also recruit people with the
necessary skillsets from the market.

How a Data Scientist Begins a Project
It all starts with business understanding. “There’s a lot of hype asso‐
ciated with data science, but unless you actually tie business value to
your data science programs, they won’t be successful,” says Reddy.

And it’s a truism, but it’s valid, that you need to begin with the prob‐
lem, not the data, says Ashish Dubey, vice president of solutions
architecture at Qubole. This means following a four-step process:

1. Identify a problem that needs solving.
2. Hypothesize what a possible solution would look like.
3. Evaluate your data resources.
4. Create a model and iterate, iterate, iterate.

This means that a data scientist should first think about deep busi‐
ness problems, and also hypothesize about what a feasible solution
might be, before going to the data.

“The reason to emphasize what kind of solution you are looking for
is that there’s always a chance that you could overengineer the prob‐
lem, whereas the answer might be quite simple,” says Dubey. “Some‐
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times you might find your solution with a much simpler traditional
approach such as a series of SQL workflows.”

The next step, which again is very important, is to understand the
datasets to which you have access. You might have a problem and a
viable hypothesis for a solution, but if you don’t have the data to test
your hypothesis, you’re going nowhere.

Then, it’s time to build your model. And you won’t be building just
one. You’ll be constantly tweaking, changing, and iterating to keep
testing until you get the results you are looking for.

Top Considerations for Data Scientists Using a
Data Lake in the Cloud
Here are some best practices for data scientists, according to Dubey.

Focus on data quality before production
As we mentioned earlier, it’s very important to understand the
problem, the hypothetical solution, the feasibility of that solu‐
tion, and your access to quality data, and then to assess how
much time a particular data project might take and how much it
would cost.

Divide larger training workloads into smaller ones that can scale
This is especially important with distributed systems, for which
you are processing terabytes or petabytes of data and need to
apply similar algorithms in a much more distributed way. To
make your model production quality and scalable, you always
need to divide your solution using smaller building blocks. Your
model might be working flawlessly with 10 terabytes, but can it
scale to a petabyte without encountering any bottlenecks? You
can ensure this by having a robust pipeline where you’ve con‐
quered one issue at a time.

Embrace the data lake
A central repository improves data accuracy and model audita‐
bility. The predictions from a machine learning model are only
as accurate and representative as the data used to train them.
Every modern manifestation of artificial intelligence and
machine learning is made possible by the availability of high-
quality data. For instance, apps that provide turn-by-turn direc‐
tions have been around for decades, but they’re much more
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accurate today thanks to the larger volume and variety of data
that can be housed in cloud object stores.

Enable faster access to data science tools
All of the aforementioned considerations contribute to delayed
time-to-value with laptop-based data science. In a typical work‐
flow for a data scientist working on a laptop or on-premises
server, the first step is to sample the data and download datasets
manually onto the local system or to connect via Open Database
Connectivity (ODBC) driver to a database. The second step is to
install all of the required software tools and packages, such as
RStudio, Jupyter Notebooks, Anaconda distributions and
machine learning libraries, and language versions such as R,
Python, and Java. In a data lake, you just need to access your
tools and you’re ready to query.
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CHAPTER 10

Considerations for
the Data Analyst

The mission of the data analyst within the data team is to apply ana‐
lytics techniques to solve relevant business problems and to gain
business insights that the company can use to make decisions.

Data analysts share this mission with the data scientists, but analysts
are closer to the business. In fact, typically data analysts are located
within the lines of business. You could even call them line-of-
business users. They report up to an intelligence director for a spe‐
cific line of business as well as to a general manager. This means that
they have a very strong operational understanding of the business.

They also tend to know the bottlenecks or choke points of the busi‐
ness, by virtue of where they sit and what they do on a daily basis.

They are not statisticians, and they are not data scientists. But what
they bring is a business-oriented analytical mindset. They can do
early hypothesis testing, for instance. They can approach a data sci‐
entist and say, “Hey, here is a sample of data that is representative of
my business. If I were to take this data sample and run some experi‐
ments, I could make a difference in how my department operates.”
Their job is primarily testing, identifying opportunities, and then
passing that information on to people who can take action on that
insight.

Data analysts always need a clear business goal toward which to
work. Rather than doing “exploratory” work on data, it is essential
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that they have a solid business case that they’re trying to solve. That
way, the project is much less risky—not just in terms of working
with executives, but also when working at lower organizational lev‐
els. If you have a clear goal, you can identify a set of steps to help
you get to that goal.

As a data analyst, it helps to catalog problems and do a value analy‐
sis at the outset to determine what you would gain by solving them.
If you were in the operations division of your company, you would
pick an operations problem that is important for the company. If
you worked in finance, you’d pick a problem that would help
streamline financial processes, for example. Value to the business
should be clear from the get-go, if the problem is clearly defined.
Risks are better managed at the ground level than at the executive
level. And you want to reduce your potential losses by being ready
to change directions if you run into a roadblock.

A Typical Experience for a Data Analyst
An analyst for a home food delivery service is trying to write up a
new query to understand why order cancellations increased in New
York within the past two days. The analyst knew this because she
regularly checks a key performance indicator (KPI) dashboard that
the data science team has created for her. She refers to it hourly,
because it is an important metric for the success of the business.

An analyst from Chicago had had a similar issue two months ago
and had run an ad hoc analysis to understand spikes in cancella‐
tions. He’d found it was caused by the Chicago office announcing a
later ETA of meal delivery of up to 25 minutes during peak dinner
hours. The New York analyst knows nothing of the Chicago analyst.
But she vaguely remembers that something similar had happened in
the past. She goes through her emails and realizes that the central
team had sent out an update.

The analyst writes to the product manager of the central team but
does not get an immediate response. She decides to go look for what
was done in the past to deep-dive into the issue. She doesn’t have a
clear strategy in mind at this point. She begins searching for queries.
She gets some matches on a few of the aforementioned Chicago
searches from two months ago, so she opens these to see if they
could be helpful.
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The searches seem to be an explorative approach to audit market‐
place configuration changes by time to determine if KPIs saw a steep
change. The analyst realizes she can do a similar examination New
York. She writes her query based on the Chicago analyst’s work and
receives a near-immediate response that what happened in Chicago
had happened in New York because a large convention was in town
with a lot of attendees who had ordered restaurant meals from their
hotels using the delivery service. Problem solved.

Top Considerations for Data Analysts Using a Data Lake
in the Cloud
Here are five best practices for data analysts working on a data lake
in the cloud:

Make absolutely sure that you’re working on the right problem and
that it’s an important problem

There are many ways to do this. For example, you can collect
input from the rest of the company, catalog the different prob‐
lems you hear about as well as the possible solutions available,
and start to substantiate why this specific project should war‐
rant additional investment. You need in effect to do two things:
estimate the value and calculate the risks of trying to achieve
that value. It’s that old business proposition: risk versus reward.
Quantifying or qualifying that early on is important.

Establish and meet milestones
Whatever project methodology you’re using and whatever time
frame you’ve set, establish milestones to ensure that you’re on
your way to finding value in the data. Demonstrate the value to
your organization if you’re successful.

Understand the business problem and translate it to the functional
data requirements

For instance, if you need to solve a specific problem, where do
you go to find this data? How do you make that data available?
What kind of tooling do you need? If you’re servicing hundreds
or thousands of reports, you also need to consider the costs of
adding new workloads to support the reports and users that
receive them.
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Map functional requirements to workloads
Identify the workloads that need to run and the right tools to
run those workloads. What kind of processing do you want to
do against that tooling? What is the optimum server to process
your data? What are the storage requirements? What are the
availability and security requirements of the data?

Work across teams
More often than not, there could always be more information
that isn’t immediately available for analysis in the data lake.
Staying involved with product, data science, and the platform
engineering team allows you to know what other information
could be available or enhanced with data mining.
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CHAPTER 11

Case Study:
Ibotta Builds a Cost-Efficient,

Self-Service Data Lake

Ibotta is a mobile technology company, founded in 2011, that is
transforming the traditional rebates industry. They provide in-app
cashback rewards on receipts and online purchases for groceries,
electronics, clothing, gifts, supplies, restaurant dining, and more for
anyone with a smartphone.

Today, Ibotta is one of the most used shopping apps in the United
States, driving more than $7 billion in purchases per year to compa‐
nies like Target, Costco, and Walmart. Ibotta has more than 27 mil‐
lion total downloads and has paid out more than $500 million to
users since its founding in 2012. Maintaining a competitive edge in
the ecommerce and retail industry is extremely difficult because it
requires creating engaging and unique shopping experiences for
consumers.

Prior to moving to a big data platform with Qubole, Ibotta’s data and
analytics infrastructure was based on a cloud data warehouse that
was static and rigid. This worked as long as the datasets were well
structured and in tabular format. However, as the business grew,
new and more complex data formats were being developed and
ingested.

At the same time, Ibotta was heavily investing in new data analytics
teams such as data engineering, decision science, and machine
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learning. The teams needed access to the same data, but each team
needed a different way of interacting with the data. Data engineering
needed a set of tools that allowed it to perform ETL in many differ‐
ents ways, such as using MapReduce, Hive, Spark, and Presto. The
machine learning team wanted to use Spark for feature engineering
and to train and deploy its models. Decision science wanted to use
SQL, R, and Python to extract insights and business recommenda‐
tions from the data.

Ibotta needed to grow beyond the descriptive analytics, which was
complementary to its products, into a pure data-driven company.
This meant that the organization needed to be segmented so that it
could adequately staff the appropriate teams in order to help accom‐
plish the following goals:

For the data engineering team
Design the data lake, manage technologies, provide data serv‐
ices, and create automated pipelines that feed into various data
marts

For the machine learning team
Create new product features and move to predictive and pre‐
scriptive analytics with use cases ranging from personalization
to optimization

For the decision science team
Develop and deliver a self-service insights platform for internal
stakeholders and external client partners.

To address the various goals of its data teams, Ibotta built a cost-
efficient, self-service data lake using a cloud-native platform.

Ibotta needed a way for every user to have self-service access to the
data and to be able to use the right tools for their use cases with big
data engines like Spark, Hive, and Presto. At the same time, the data
engineering team needed to be able to prepare data for easy con‐
sumption. Qubole provided an answer to the demands of both
teams, those perfecting operations as well as those analyzing the
data. Ibotta realized the first step to building a self-service platform
was to define what data was critical to enable the analytics teams to
meet critical business milestones. At the time, users were employing
a combination of data (from the transactional system and the data
warehouse) to run their models.
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After the value of each dataset was defined, the data engineering
team could begin building pipelines that extracted data from the
data warehouse and Aurora and converted it to JSON format, which
was then stored in the raw storage area.

From there, additional pipelines converted the JSON format into
ORC and Parquet columnar format and stored the resulting data in
the optimized storage area. Thanks to Airflow and its ability to
monitor new partitions in the metastore, downstream pipelines
could then start running as soon as the new data locations were
exposed to the Hive metastore.

To mitigate the legacy data warehouse constraints, Ibotta now has
ETL jobs loading data from Hive into Snowflake for consumption
by its BI tool, Looker. Ibotta utilizes Hive and Spark jobs for pro‐
cessing raw data into production-ready tables used by the decision
science team. This is all orchestrated using Airflow’s hooks into
Qubole to ease automating jobs via the API. Airflow gives more
control over orchestration than cron and AWS Data Pipeline. It also
provides performance benefits, including parallelization and the
flexibility of scheduling jobs as a DAG instead of assuming linear
dependency.

Ibotta uses Qubole to provision and automate its big data clusters.
Specifically, it uses Spark for machine learning and other compli‐
cated data processing tasks; Hive and Spark for ETL processes; and
Presto for ad hoc queries like exploratory analytics.

Utilizing this platform, Ibotta has empowered the decision science
team to use BI tools to produce real-time dashboards for hundreds
of users. Since instituting their new data platform, Ibotta has
increased the volume of processed data by more than three times
within four months, and it is passing more than 30,000 queries per
week through Qubole.

Ibotta’s decision science team was immediately empowered after
Qubole was in place. It achieved the goal of self-service access to the
data and efficient scale of compute resources in Amazon EC2 for big
data workloads. Within a month, the machine learning team was
launching new prescriptive analytics features in the product that
included a recommendation engine, A/B testing framework, and an
item-text classification process.
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By using Qubole on AWS, teams at Ibotta are able to provision
resources themselves without having to engage a central administra‐
tion group. Big data clusters are using a 60% to 90% mix of spot
instances with on-demand nodes, which, combined with the use of
Qubole’s heterogeneous cluster capability, makes it really easy and
reliable to achieve the lowest running cost for big data workloads.
Additionally, autoscaling and cluster life-cycle management provide
significant savings to Ibotta’s cloud infrastructure costs. This means
managing budget and ROI is much easier, and Ibotta can forecast
how to scale different features and projects accordingly.

Ibotta is focusing on delivering next-generation ecommerce features
and products that help drive both a better user experience and part‐
ner monetization. Qubole allows Ibotta to spend time developing
and productionizing scalable data products. More important, Ibotta
can concentrate on bringing value back to users and customers.
Specifically, a cloud-native data platform has allowed Ibotta to ach‐
ieve success in the following areas:

Data-driven culture
Continuing to ensure that technology, analytics, and company
culture work together seamlessly

Product innovations
Using Qubole to drive even greater actionable insights for Ibot‐
ta’s client partners

Performance
Query tuning, code reviews, and optimizing cluster and data
structure to improve operational efficiencies and performance
across queries and workloads
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CHAPTER 12

Conclusion

Although there are numerous ways to build a data lake, we believe
that adopting a cloud-native platform capable of handling complex,
varying workloads as well as delivering deep analytics and machine
learning for your big data is the way to go. Even if you are not using
all of the technologies mentioned, we hope that you were able to see
why we argue this is the case.

In this book, we’ve provided a brief history of big data tools as they
evolved, first in the open source world and then later as commercial
or Software-as-a-Service distributions, and the subsequent develop‐
ment of the public cloud market. We’ve discussed how the trends
have converged to give today’s enterprises powerful choices on how
to extract value from their structured and unstructured data.

We also showed you why you need a data lake to most effectively
take advantage of your data. We made the case for a data-driven cul‐
ture and showed you how to get there. Then, we walked you
through how to build a data lake and stressed the benefits of build‐
ing your data lake in the cloud. After you’re in the cloud, you’ll need
tools to manage your growing data lake, so we provided a roundup
of those. Security is just as important in the cloud as it is for on-
premises setups, and we explained how to do it right. Then, we went
deeper into the roles and responsibilities of three key members of
the data team—data scientists, data engineers, and data analysts—to
help you establish your own team with a structure that works, given
your size, budget, and culture.
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Today’s leading platforms provide easy-to-use tools such as SQL
query tools, notebooks, and dashboards that use powerful open
source engines. Optimally, such platforms also provide a single,
shared infrastructure that enables your users to more efficiently
conduct data preparation, analytics, and machine learning work‐
loads across best-of-breed open source engines.

This approach gives your data team the five key capabilities they
need to operationalize the data lake and make it possible for your
business to extract value from it:

Scalability
With the cloud, the sky’s the limit. You can analyze, process, and
store unlimited amounts of data. By scaling up resources when
you need them, you can minimize costs by paying only for the
compute and storage you need. This helps you with financial
governance to ensure that you stay within assigned budgets.

Elasticity
What goes up can come down again. The cloud allows you to
scale down as easily as you scale up. You can even change the
capacity and power of machines on the fly, making your busi‐
ness much more agile and flexible when dealing with today’s
often-volatile markets.

Self-service and collaboration
Because everything in the cloud is driven by APIs, your data
consumers—your data scientists and data analysts—can choose
the resources they need without requiring that someone else
provision these for them. This eliminates the bottleneck of wait‐
ing for someone to set up appropriate infrastructure for your
models or queries.

Cost efficiencies
With the cloud, you reap cost efficiencies on two levels. First,
you save because, unlike with an enterprise software license, you
pay only for what you use. Second, your operational costs are
much lower because the cloud boosts the productivity of your
IT personnel. They don’t spend time managing hardware or
software for infrastructure, which includes never again having
to perform an upgrade. All of that is done by the cloud vendor.
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Monitoring and usage tracking
Finally, the cloud provides monitoring tools that allow organi‐
zations to tie usage costs to business outcomes and therefore
gain visibility into their ROI. Having the tight financial gover‐
nance that this enables is a huge deal.

Best Practices for Operationalizing the Data
Lake
To wrap up, here are some tips on how to choose the right cloud-
native big data platform:

Don’t get locked into a single open source engine
Some cloud platforms allow you to use only certain engines.
Don’t go there. As we explained in this book, your data team is
made up of a diverse mix of operators and consumers, and
you’re going to have multiple personas with multiple needs
working on your big data initiatives. Each persona on your data
team probably has their own preferences with respect to big
data tools.

Also, data science is evolving very quickly. A good best practice
is to be open to using all the engines that are out there. What
was cool yesterday is okay today, and will be passé tomorrow.
Even if a tool is hot today, you know something new is around
the corner. Giving your data team choices from a broad range of
tools is a vital best practice. This means choosing a cloud plat‐
form that supports all the engines available, to keep your
options open as your team works together to productionize
advanced analytics models for both batch and streaming jobs.

Make sure the platform can do autoscaling to help you with financial
governance

Cloud-native platforms like Qubole intelligently optimize
resources through autoscaling. They automatically assign more
capacity when needed and release resources when workloads
require less capacity by doing intelligent workload-aware
autoscaling. This represents a huge game changer for organiza‐
tions that pay only for what they use rather than preemptively
ordering capacity and hiring teams to provision and maintain
that technology.
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Require self-service capabilities for all the different personas on your
data team

Self-service infrastructure is critical for several reasons. First, it
is efficient economically. Second, it eliminates bottlenecks that
could happen at the data-engineer or data-scientist levels. The
ability of these data professionals to do their jobs should not be
dependent on somebody else provisioning the suitable kind of
Spark cluster for them.

However, this self-service capability should not equate to any of
the personas having to do all the work. For example, data scien‐
tists need access to data, infrastructure, and the appropriate
kinds of libraries—but these resources should be made easily
available to them. Likewise, data engineers should be able to get
the resources they need very quickly without going through an
intermediary.

Demand a cloud-native architecture for everything that will live in the
cloud

The cloud provides a set of capabilities that the data scientists
should be able to use. It’s important to understand, however,
that having a cloud-native architecture doesn’t mean that you
cannot do things on-premises. It means that when you move to
cloud, you do not carry the baggage of on-premises architec‐
tures and tools with you.

Ensure that it is designed to scale
Big data analytics and machine learning models tend to expand
very quickly. The amount of data that you are trying to digest
can suddenly explode. You need to be able to build a scalable
architecture. You need a cloud-native platform that can deal
with very large-scale nodes, lots of different types of users, a
range of use cases, and, as we’ve said before, big data engines.
Keep in mind that big data initiatives rarely shrink when opera‐
tionalized. Most commonly, after users get a taste of what can be
done in a data-driven world, they want more, and they will put
pressure on your data team until they get it.

Verify its automation capabilities
It’s critical that you automate, automate, automate. Many of the
functions of these big data analytical models are extraordinarily
complex. It’s simply not possible for anybody to do all the
required maintenance manually. Whether you need to scale a
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cluster up or down, or access the newest version of an open
source engine, you must automate tasks as much as possible.

General Best Practices
There are also three platform-independent best practices that you
should consider when planning your data strategy in the cloud:

Give your data team the freedom to fail
Analytics is all about learning. Even on the human side. That’s
why modeling and querying both require lots of iterations. You
want your data scientists to think out of the box, to try wild new
things—and to continually fail. Then, they try again. You want
your data analysts to be able to hone their queries and iterate on
them until they get the answers they need. Don’t expect imme‐
diate success, and don’t criticize ideas that don’t pan out. The
next one might be the winner.

Break down data silos
This is essential—and not just a philosophical argument. This is
grounded in the reality that to work, your big data initiatives
require clean, unified data pipelines. If you’ve ever worked for a
fairly large multinational company, you know that each business
channel typically operates in its own silo. In a financial institu‐
tion, you could have a mortgage capital system, an equity sys‐
tem, and a credit card approval system, each having its own data
and its own architecture. It could literally take one or two years
before you could create models or run queries across these silos.
This, of course, is why creating a data lake for one “source of the
truth” is essential.

Create an end-to-end data pipeline
Finally, when you think of operationalizing the data lake, you
also need to think about end-to-end pipelines. Where is the data
coming from? How is it coming? How is streaming data han‐
dled? What kind of data transformations are being done? How
are you masking certain information? How is metadata being
extracted? How is data labeled? After the data scientists have
built these models, how is the data reused by other people?
These are all essential considerations.
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Now that you’ve laid the foundation, it’s time to find the right cloud-
native platform and get busy applying these precepts to use data to
solve your business’s toughest challenges!
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