
White Paper

1

Customer’s Journey of Running
Spark jobs with Qubole

White Paper

2

One of Qubole’s customers—a large enterprise cloud content management company—runs several sophisticated
machine learning (ML) predictive models daily for its retail clients. These models use large volumes of data, such
as products, line items, purchase orders, among others. A necessary prerequisite is to prepare the data for
training and running these ML models. Customer runs a daily data extract, transform, and load (ETL) job using
Apache Spark on Qubole’s Open Data Lake Platform. However, the job would run for over forty six minutes and
fail intermittently, causing reliability issues, delays, and troubleshooting problems—aside from cost overruns
and the business ramifications for its clients. So it was essential for the customer to resolve these issues and
ensure the job ran reliably with the best performance possible moving forward on a regular basis.

This is three part journey of how customer implemented it and now uses as part of daily routine:

Act 1
Maximize the chance of getting spot nodes by leveraging heterogeneous

cluster configurations with Qubole Open Data Lake Platform .

Act 2
Optimize the job for lower costs while ensuring reliability with

Qubole platform’s Intelligent Spot Management.

Act 3
Visualize and optimize jobs for better performance in Spark by using

Qubole Sparklens.

White Paper

3

Consider a cluster with following configuration:

1.	 Minimum Worker Nodes = 2

2.	 Maximum Worker Nodes = 250

3.	 Master Instance Type = r5.4xlarge (16 cores, 128 GB mem)

4.	 Worker Instance Type = r5.2xlarge (8 cores, 64 GB mem)

5.	 Heterogeneous Configuration = Disabled

6.	 Fallback to On-demand

•	 Option a: Enabled

•	 Option b: Disabled

Mandatory Requirement: Ensure a cluster is running only when there are active workloads.

Upon arrival of the first workload or when a scheduled interval condition is met, Qubole cluster warms up to
the minimum configuration. The minimum configuration in this example will comprise one master node of type
r5.4xlarge and two minimum worker nodes of type r5.2xlarge.

Let’s assume the worker instance type (r5.2xlarge) configured in the cluster is relatively new. This instance’s
demand is high due to its popularity and is either not available in the Spot market or is running low on availability.

Scenario 1:
1.	 The cluster is running at the minimum configuration of one master node of type r5.4xlarge and two minimum

worker nodes of type r5.2xlarge.

2.	 Let’s say that the hourly On-Demand price for r5.2xlarge is say $10 and Spot discount is, hypothetically, 90%
or $1.

3.	 A giant workload arrives, which triggers an upscale event and requires an additional capacity of one hundred
r5.2xlarge worker instance types. This equates to 800 cores, 6400 GB mem, adding $100 to the hourly cost.

4.	 Since r5.2xlarge is a popular instance type and is not available in the AWS Spot Market, we have two options:

•	 Option #1: Acquire one hundred On-Demand nodes, with fallback to On-Demand Feature enabled, to
ensure that the cluster has sufficient capacity to meet the workload’s SLA. This, however, will shoot up
the hourly EC2 Cost to $1000.

•	 Option #2: Keep trying to acquire the desired spot nodes if fallback to on-demand is disabled. This
option introduces delays and failures and results in unpredictable costs.

Qubole platform’s Heterogeneous Cluster Configuration capability is designed to address these potential
problems automatically. With heterogeneous cluster configuration you can configure the cluster to have
additional worker instance types.

Act 1: Heterogeneous Cluster Configurations to Rescue

White Paper

4

Repeat Scenario 1 with Heterogeneous Cluster Configuration:
Now, let’s say we add heterogeneous configuration to the same cluster as follows:

1.	 Primary Worker Instance Type - r5.2xlarge

2.	 Secondary Worker Instance Types - r5.xlarge and r5.4xlarge

•	 An r5.xlarge instance has 4 cores and 30.5 GB memory with an AWS EC2 cost of $0.5.

•	 An r5.2xlarge instance has 8 cores and 61 GB memory with an EC2 cost of $1.

•	 An r5.4xlarge instance has 16 cores and 122 GB memory with an EC2 cost of $2.

The scenario 1 will now be following:

1.	 Same giant workload arrives and triggers an upscale event. This requires an additional capacity of one
hundred r5.2xlarge worker instance types, which equates to 800 cores, 6400 GB mem.

2.	 With the new cluster configuration with heterogeneous config enabled, Qubole’s platform will meet this
need with one of following alternatives:

•	 200 r5.xlarge instances; or

•	 100 r5.2xlarge instances; or

•	 50 r5.4xlarge instances; or

•	 A combination of r5.xlarge, r5.2xlarge and r5.4xlarge instances equates to the same desired additional
capacity of one hundred r5.2xlarge instances.

3.	 If the primary worker instance type, r5.2xlarge, is not available in the spot market, the spot request will be
fulfilled with the secondary instance types r5.xlarge and r5.4xlarge. The more alternate worker instance
types you configure, the higher are the chances of getting spot nodes.

4.	 Additionally, all of the above options will add the same capacity (in this example, 800 cores and 6400 GB
memory) and cost the same (in this example, $100). All three amount to the equivalent of adding 100 nodes
of the primary instance type (r5.2xlarge).

As you can see Qubole’s native Heterogeneous Cluster Configuration helps the customer automatically
maximize the chances of getting spot nodes, thus increasing reducing costs, while ensuring the system meets
workloads SLAs.

White Paper

5

Spot nodes come at a heavily discounted price compared to On Demand or Reserved nodes. Therefore higher
spot utilization equates to greater cloud cost savings. Qubole Open Data Lake Platform with Intelligent Spot
Management helps maximize the chances of getting spot nodes. It also ensures that the cluster always maintains
the desired spot utilization. Additionally, the platform has built-in intelligence to reduce spot loss risk, and job
failure risks associated with spot loss. Qubole platform does that in 4 easy steps.

Autoscaling boundaries: Ensures that the
cluster has optimal capacity to meet SLAs of
ongoing workloads. The feature avoids job failures
due to insufficient capacity in undersized clusters,
and resource waste due to excessive capacity in
oversized clusters in on-premises setups—thus
helping data teams avoid unnecessary cloud
costs. For the problem in hand, the cluster is
configured to use 3 minimum worker nodes and
autoscale upto a maximum of 250 worker nodes.

Heterogenous configurations: Required spot
capacity (cores and memory) is maintained even in
cases where AWS is not able to fulfil the requested
capacity for the configured primary worker instance
type. Heterogeneous config is NOT enabled in the
cluster.

Desired Spot utilization: Maintains a certain
percentage of Spot nodes in the cluster, which
directly equates to the cloud cost savings. The
cluster is configured to have a desired Spot
utilization of 80%. This means that Qubole has to
maintain 80% of total autoscaling nodes as Spot
nodes. In a completely scaled out scenario for this
cluster when the cluster has 250 worker nodes
running, this means Qubole has to maintain about
197 Spot nodes.

Fallback to On-demand: Required capacity (cores
and memory) is available via on-demand even in
cases where AWS is not able to fulfil the requested
spot capacity for the configured worker instance
type from spot. If the cluster is configured to
use this feature, Qubole fallback’s to on-demand
nodes in these circumstances. This configuration
is enabled in the cluster.

Act 2: Optimize Jobs with Maximum Spot Utilization
while Ensuring Reliability

Step 1: Optimize Spark Clusters for Spot Utilization
72 cluster instance runs happened with platform’s Automated Cluster Life Cycle management that:

•	 Automatically starts clusters upon the arrival of a first workload or at a scheduled interval,

•	 Automatically scales up when the demand for more capacity increases either due to higher concurrency or
the bursty nature of workloads

•	 Automatically scales down when workloads finish

•	 Auto-terminates a cluster when it is idle for a pre-configured period specified as “idle cluster timeout.”

White Paper

6

Following node metrics were collected and observations were made:

Observations
1.	 33 out of 72 cluster instance runs experienced spot loss. Spot loss risk is higher with AWS instance types

that are high in demand. In this particular case, all spot nodes that experienced Spot loss were of type
r4.4xlarge.

2.	 Desired Spot utilization for the cluster was 80% and the actual (i.e.: realized) overall Spot utilization was
66.68%.

3.	 Spot utilization during the specific cluster run when command failure occurred was 56.92%. It hints that spot
availability for the configured AWS instance type was low.

Metrics
Cluster Run @ Failed Job

(Before Optimization)
Aggregate

(Before Optimization)

Node Metrics

Total Cluster Instance Runs 1 72

Start Time 10/ 31/ 2019 17:46:00 9/ 17/ 2019 21 :00:12

End Time 10/ 31/ 2019 21:41 :00 11/ 5/ 2019 3:15:19

Total Workloads 32 675

Total Nodes Provisioned 842 25,305

Total Auto-scaling Nodes 838 25,017

Total Spot Nodes 477 16,682

Total Spot Loss Nodes 166 1,497

Average Spot Utilization - Desired 80% 80%

Spot Utilization - Actual 56.92% 66.68%

Spot Loss Rate 34.80% 8.97%

Metrics

4.	 Spot loss rate for the cluster across all cluster instance runs was 8.97% and that rate shot up to 34.80%
during the specific cluster run when command failure occurred.

From the metrics, it was evident that the cluster was experiencing performance problems due to an unusually
high spot loss rate (34.80%), which was exacerbated by the spot utilization (56.92%) in the cluster.

Solution:
The goal of the solution that was implemented addressed this problem in two ways:

1.	 Eliminated spot loss risk while leveraging higher spot utilization in the cluster and

2.	 Leveraged engine level enhancements to effectively handle spot loss nodes and ensure reliability.

White Paper

7

Higher Spot Utilization:

The following recommendations were based on the data points captured at the time when the incident occurred.
Keep in mind that Spot availability in the AWS Spot market changes frequently.

1.	 Choose instance types with lower service interruption rates in the desired VPC region. A lower service
interruption rate means higher reliability for tasks running on that instance and thus provides cost benefits
associated with Spot instances (read: greater discount). Follow these guidelines to find lower service
interruption instances:

•	 You can check current service interruption rates here.

•	 Instances with service interruption rate of <5% have lower Spot loss risk.

•	 For example, r4.4xlarge has a service interruption rate of 5-10%. Whereas i3.4xlarge has a service
interruption rate <5%.

2.	 Use heterogeneous configuration for the Spark on Qubole cluster, with at least 5 secondary worker instance
types. A heterogeneous configuration with multiple secondary worker instance types maximizes the chances
of getting Spot nodes in scenarios where a primary worker instance type is not available in the Spot market
at the time of bidding due to high demand. This avoids the unnecessary spike in cloud costs during such
periods, resulting in lower cloud costs.

•	 Ensure that Spot fleet policy is in place for heterogeneous configuration for Spot requests to work
- here.

•	 In our example, for the customer’s region, r4.8xlarge, i3.8xlarge, r4.2xlarge, i3.2xlarge were the better
candidates with lower service interruption rate of < 5% at that time.

3.	 Use secondary worker instance types across different instance families.

•	 Generally, when an AWS instance type is experiencing Spot loss due to high demand and low availability,
the availability of other instance types from the same family is also impacted. In such scenarios, having
secondary worker instance types from different families ensures that the desired capacity is still
fulfilled using Spot nodes belonging to secondary worker instance types. This avoids unnecessary
spikes in cloud costs during such periods.

4.	 Reduce Spot Request Timeout. Link to cost saving and/or reliability

•	 Generally, Spot loss risk for a given Spot node is directly proportional to the amount of time taken
to acquire that node. A lower Spot request timeout helps acquire relatively stable Spot nodes in the
cluster and ensures reliability in the cluster. Qubole’s intelligent Spot rebalancer, which periodically
runs as a background process in the cluster, monitors and corrects the Spot utilization in the cluster
to the desired configuration.

Handle Spot Loss and Eliminate Reliability Risk

Apache Spark on Qubole effectively handles the Spot Node Loss in Engine. Enhancement makes Qubole Spark
more reliable in the event of Spot Node Losses. Following state machine explains the algorithm used to handle
Spot Node Loss effectively:

https://aws.amazon.com/ec2/spot/instance-advisor/
https://docs.qubole.com/en/latest/admin-guide/cluster-admin/heterogeneous-clusters.html

White Paper

8

RUNNING

Kill Executors

Spot Loss

Termination

DECOMMISSIONING EXECUTOR
DECOMMISSIONED

SHUFFLE
DECOMMISSIONEDTERMINATED

1.	 AWS sends the spot loss notification about two minutes prior to taking away the spot nodes. Upon receiving
such Spot Node Loss notification, Qubole puts the impacted nodes into DECOMMISSIONING state.
Additionally, Qubole ensures that no new tasks are assigned to nodes in this state.

2.	 Before the Spot node is lost, Apache Spark on Qubole kills all the executors running on the node. This is
done to ensure fast failure of tasks, so that they can be retried on other surviving nodes. There might be
tasks which could have finished within the time boundary AWS takes away the node. To avoid such scenarios,
Qubole Spark waits for a configurable period of time before killing the executor. That waiting period can be
configured by setting the following property - ̀ spark.qubole.graceful.decommission.executor.leasetimePct̀ .
After killing the executors, Node is put into EXECUTOR DECOMMISSIONED state.

3.	 After executors are killed, all the map outputs from the host are deleted from MapOutputTracker. This is to
avoid other executors from reading the shuffle data from this node and failing due to FetchFailedExceptions.
Node is put into SHUFFLE DECOMMISSIONED state.

4.	 After Node is terminated, move it to TERMINATED state.

5.	 Even when Map Outputs are cleared from the node (before moving it to SHUFFLE DECOMMISSIONED
state), there will be stages that would have started reading shuffle data earlier. Those stages will fail due
to FetchFailureException after Spot node is lost. Such FetchFailedException due to Spot Node Loss are
ignored and stages are retried. Moreover, such retries are not counted towards failures bounded by spark.
stage.maxConsecutiveAttempts (which is 4 by default). However, there is a threshold on the number of
times they can experience failure due to SpotNode loss which can be configured via spark.qubole.graceful.
decommission.fetchfailed.ignore.threshold.

Post Recommendation Implementation Impact Summary:
The table below depicts before and after cluster configurations and numbers of the cluster optimization
recommendations that were implemented in the customer’s cluster.

White Paper

9

1.	 15.63% increase in Average Spot Utilization (from 66.68% to 79.75%) leading to greater cloud cost savings.

2.	 83.39% drop in Average Spot Loss Rate (from 8.97% to 1.49%) leading to greater cloud cost savings and
greater performance.

3.	 Additionally, we did not observe spot loss related failures after the engine optimizations were rolled out.

Act 2 before and after scenario shows that Qubole helped the customer improve spot utilization and reduce
spot loss rate while ensuring that the reliability was not impacted.

Cluster Configurations Before Optimization After Optimization

Master Instance Type r4.2xlarge (8 cores, 64 GB mem) r4.2xlarge (8 cores, 64 GB mem)

Worker Instance Type r4.4xlarge (16 cores, 128 GB mem) i3.4xlarge (16 cores, 128 GB mem)

Minimum Worker Nodes 2 2

Maximum Worker Nodes 250 250

Heterogeneous
Configuration

No Yes

Secondary Worker Instance
Types

N/A

r4.8xlarge (32 cores, 256 GB mem), weight = 2

i3.8xlarge (32 cores, 256 GB mem),weight = 2

r4.2xlarge (8 cores, 64 GB mem), weight = 0.5

i3.2xlarge (8 cores, 64 GB mem), weight = 0.5

Desired Spot Utilization 80% 80%

Fallback to Ondemand Enabled Enabled

Spot Request Timeout 10m 3m

Before and After Configurations:

Before and After Metrics:

Metrics
Cluster Run @

Failed Job (Before
Optimization)

Cluster Run @
Optimized Job (After

Optimization)

Aggregate (Before
Optimization)

Aggregate (After
Optimization)

Node Metrics
Total Cluster Instance
Runs 1 1 72 290

Start Time 10/31/2019 17:46:00 11/25/2019 17:07:00 9/17/2019 21:00:12 11/05/19 17:23:00

End Time 10/31/2019 21:41:00 11/25/2019 17:44:00 11/05/19 3:15:19 03/07/20 0:45:00

Total Workloads 32 3 675 1,732

Total Nodes
Provisioned 842 346 25,305 17,287

Total Auto-scaling
Nodes 838 342 25,017 16,369

Total Spot Nodes 477 304 16,682 13,054

Total Spot Loss Nodes 166 0 1,497 194

Average Spot
Utilization - Desired 80% 80% 80% 80%

Spot Utilization
- Actual 56.92% 88.00% 66.68% 79.75%

Spot Loss Rate 34.80% 0.00% 8.97% 1.49%

White Paper

10

ACT 3: Optimize Spark Applications for Performance
using Qubole Sparklens

Let’s start with a glossary of metrics that Qubole Sparklens offers. Qubole Sparklens, when enabled, provides
these metrics out-of-the-box.

Sparklens Metrics - Application Level:

Driver WallClock Total time taken by driver to complete the execution.

Executors WallClock Total time taken by all the executors to complete their execution.

Total WallClock Driver WallClock + Executors WallClock

Critical Path Minimum possible time for the app assuming unlimited resources.

Ideal Application Minimum possible time for the app assuming perfect parallelism and no data skews.

Sparklens Metrics - Stage Level:

WallClock Stage% Total time taken by driver to complete the execution.

PRatio
Degree of parallelism = number of tasks in the stage / number of cores.
PRatio > 1 => Too many tasks
PRatio < 1 => Too many cores

TaskSkew Minimum possible time for the app assuming unlimited resources.

TaskStageSkew Minimum possible time for the app assuming perfect parallelism and no data skews.

OIRatio Total output of the stage (results + shuffle write) / total input (input data + shuffle read)

As mentioned in Act 1, the customer has a Spark ETL job that has reliability and performance issues. The
job still ran for over forty six minutes and required optimization to reduce that time. Note that performance
optimization is an iterative process.

Iteration #1:
To start with, configure the customer’s spark ETL job to use Sparklens for generating the metrics by passing
following arguments to spark-submit.

--packages qubole:sparklens:0.3.1-s_2.11

--conf spark.extraListeners=com.qubole.sparklens.QuboleJobListener

White Paper

11

 Iteration #1 - Qubole Sparklens Output:
1. Application Metrics

 2. Qubole Sparklens: Per Stage Metrics

3. Qubole Sparklens: Simulation Model Metrics

White Paper

12

Iteration #1: Consolidated view of Application Configuration and Sparklens Metrics

Iteration #1 Sparklens Metrics:

1.	 Total Wall Clock = ~ 46m

2.	 Critical Path = ~ 7m

3.	 Maximum available cores as per App Config = 60

4.	 Least number of tasks across all stages = 447

5.	 PRatio = 333.33

Observations:

1.	 There was a huge disparity in Critical Path and
Total Wall Clock which confirmed that there was a
lot of room to optimize resources.

2.	 PRatio > 1 => Too many tasks, but not enough
cores!

3.	 Min Tasks across all stages = 447. => Adding
more cores (one core per task) should increase
parallelism and improve performance.

4.	 447 cores = 447/4 = ~ 112 Executors.

Next Step / Action:

Increase Max Executors from 20 to 100.

For the next iteration, the customer increased parallelism in the executor stage by adding more executors.

White Paper

13

Iteration #2: Consolidated view of Application Configuration and Sparklens Metrics

Iteration #2 Sparklens Metrics:

1.	 Total Wall Clock = ~ 16m

2.	 Critical Path = ~ 7m

3.	 Maximum available cores as per App Config = 400

4.	 Least number of tasks across all stages = 447

5.	 PRatio = 50

6.	 Simulation Model confirmed that adding more
executors would help improve performance.

Observations:

1.	 Total Wall Clock dropped drastically so increasing
max executors count from 20 to 100 helped. There
is still a reasonable disparity between Total Wall
Clock and Critical Path.

2.	 PRatio dropped to 50 but it’s still high enough
which indicates that there are more tasks than
available cores.

Next Step / Action:

Action: Increase Max Executors from 100 to 400.

White Paper

14

Iteration #3: Consolidated view of Application Configuration and Sparklens Metrics

Iteration #3 Sparklens Metrics:

1.	 Total Wall Clock = ~ 9m

2.	 Critical Path = ~ 7m

3.	 Ideal Application = ~ 3m

4.	 PRatio = 17.61

5.	 Model Estimation: Executors Count = 1420

6.	 Model Estimation: Estimated Duration = ~7m

Observations:

1.	 Disparity in Total Wall Clock and Critical Path has
reduced significantly.

2.	 Disparity in Critical Path and Ideal Application
means that there is data skew.

3.	 The simulation model confirms that adding more
executors would NOT help improve performance.

Next Step / Action:

Action: Keep Max Executors to 400 but Increase Min
Executors from 20 to 100 so that nodes are acquired
beforehand

White Paper

15

Iteration #4: Consolidated view of Application Configuration and Sparklens Metrics

Iteration #4 Sparklens Metrics:

1.	 Total Wall Clock = ~ 17m

2.	 Critical Path = ~ 7m

3.	 PRatio = 15.97

4.	 Model Error = 52%

5.	 Model Estimation: Executors Count = 1420

6.	 Model Estimation: Estimated Duration = ~7m

Observations:

1.	 Increasing max executors from 100 to 400 did NOT
help this time!

•	 Reason: Upscaling from 20 Min Executors to
400 Max Executors required the cluster to be
upscaled which added some delays.

2.	 Disparity in Critical Path and Total Wall Clock
confirms that there is still room to optimize
resources.

3.	 PRatio has dropped significantly from 50 to 15.97.

4.	 The simulation model confirms that adding more
executors would NOT help improve performance.

Next Step / Action:

Action: Keep Max Executors to 400 but Increase Min
Executors from 20 to 100 so that the required nodes
are acquired immediately after job submission instead
of waiting for spark auto-scaling to kick in.

White Paper

16

Summary: Consolidated view across iterations

Impact Summary:

1.	 Increasing max executors count from 20 to 100 increased parallelism significantly. The PRatio came down
from ~333 to 50 and Total Wall Clock reduced from ~46m to 16m.

2.	 Increasing max executors count from 100 to 400 increased parallelism further up. PRatio came down from
50 to 15.97. Total Wall Clock remained flat.

3.	 Increasing min executors from 20 to 100 brought down Total Wall Clock Time from ~17m to ~9m.

4.	 80% drop in latency: The job that originally ran for ~46 minutes was optimized to complete in ~9 minutes.

5.	 The disparity between Total WallClock and Critical Path dropped down significantly to a satisfactory level.

Thus, the customer optimized the spark application performance by increasing the degree of parallelism using
cues from sparklens metrics of the spark application.

White Paper

17

For more information:

WWW.QUBOLE.COM

Qubole is passionate about making data-driven insights easily accessible to anyone. Qubole customers currently process
nearly an exabyte of data every month, making us the leading, and industry first cloud-agnostic Open Data Lake Platform.
Qubole’s Open Data Lake Platform self-manages, self-optimizes and learns to improve automatically and as a result delivers
unbeatable agility, flexibility, and TCO. Qubole customers focus on their data, not their data platform. Qubole investors
include CRV, Lightspeed Venture Partners, Norwest Venture Partners and IVP. For more information visit www.qubole.com

KEY TAKEAWAY

Important considerations for sizing your spark applications:

1.	 Concurrency and Cluster auto-scaling limits (min, max worker nodes): The number of applications that
may run concurrently and cluster autoscaling limits need to be considered while sizing the spark application.

2.	 Workload scaling limits (min, max executors): The degree of parallelism of the spark application is limited
to workload scaling limits configured for the application.

3.	 Beyond a certain threshold, adding more resources (executors and cores) will NOT help. Identifying that
threshold for your spark application is extremely important to avoid unnecessary resource wastage and
cloud cost.

4.	 Performance vs cost trade-off: Adding more resources will help complete the long running stages faster.
However, these additional resources, if acquired upfront for the entire duration of the job, can remain idle
(unutilized) during the execution of smaller stages. This could drop cluster utilization and hence increase
overall cost.

