
ENABLING SQL ACCESS 
TO YOUR DATA LAKE WITH 
PRESTO, HIVE AND SPARK 
A COMPARATIVE APPROACH

White Paper

by Jorge Villamariona, Qubole Technical Marketing



White Paper

TABLE OF CONTENTS

INTRODUCTION...............................................................................................................................................

COMMON TYPES OF  DATA WORKLOADS..............................................................................................

PROLIFERATION OF TECHNOLOGY ALTERNATIVES............................................................................

      Hive.................................................................................................................................................................

      Spark..............................................................................................................................................................

      Presto............................................................................................................................................................

COMPARISON AND SUITABILITY OF EACH ENGINE............................................................................

WHICH ENGINE SHOULD YOU USE (CONCLUSION / RECOMMENDATIONS).............................

CUSTOMER SUCCESS STORIES.....................................................................................................................

      Ibotta..............................................................................................................................................................

            Business Need......................................................................................................................................

            Solution..................................................................................................................................................

            Impact.....................................................................................................................................................

      TiVo................................................................................................................................................................

            Business Need......................................................................................................................................

            Solution..................................................................................................................................................

            Impact.....................................................................................................................................................

3

4

5

5

8

11

14

16

17

17

17

17

17

18

18

18

18

2



INTRODUCTION

Regardless of their role, all data professionals including engineers, scientists, analysts, and administrators use Structured 
Query Language (SQL) as a common language. The number of data stores and formats has increased dramatically since 
SQL was first created in the 1970s,  yet SQL remains just as relevant — if not more so — than when it was first 
conceived. 

Not long ago, at the dawn of big data, data professionals had to wade through unstructured data using MapReduce, 
which allowed for filtering and sorting (mapping) as well as summarization (reducing) to gain insights from data. Data 
professionals soon realized the limitations of this approach, and the open source community quickly started building 
new SQL engines that today provide a more familiar approach to query various data formats.

This new SQL ecosystem allows a number of data professionals to accelerate development time by applying their 
knowledge when working with multiple systems. This common language also allows ETL (Extract, Transform, Load) 
systems to facilitate the creation of data pipelines that carry data between different engines and systems.   

All of these factors make SQL the right common tool to enable data lake access for all users within your organization.  
However, the variety and number of engines by itself represents a challenge when it’s time to decide which engine to 
use.  

The intent of this white paper is to assist data professionals choose the optimal engine for their specific use case.  In the 
last section we document two customer success stories as examples of how your organization can succeed with the 
right data platform.
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COMMON TYPES OF  DATA WORKLOADS

The common link between the SQL data lake engines is that they are designed to deal with very large data sets and have 
a distributed computing architecture that provides scalability. These engines offer different degrees of support for 
speedy processing, interactivity, fault tolerance, and type of workload.   The most common types of workloads can be 
classified as: batch, streaming, and interactive. Because of the high impact workload type has on selecting an engine, it's 
important to explore each type of workload in detail.

Batch: Batch workloads allow processing of large volumes of data that have been aggregated over time. The data is 
processed in batches that are “well defined” and generally scheduled to run automatically — “well defined” in this 
instance means the data being processed is the data that was available at the time the process initiated execution. The 
processing is generally complex and time consuming. With batch processing, achieving a greater throughput is more 
critical than increasing processing speed.

Streaming: n contrast to batch workloads, streaming workloads process data that is generated continuously. This is the 
type of data generated by web logs, call detail records from phone companies, social networks, etc.  Stream processing 
allows processing of data as it arrives — and often without the need for persisting it first in a datastore. Stream 
processing supports real-time analytics that leverage the data as soon as it arrives.  With stream processing, both 
throughput and speed are critical factors.  With streaming data loads, the value of the information decreases with the 
passage of time.

Interactive: Interactive processing is used to explore data sets. As query results come back, new and more in-depth 
questions are reformulated. Fast processing is critical to preserve the user’s train of thought. Data scientists, data 
analysts, and developers often use interactive queries.
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PROLIFERATION OF TECHNOLOGY ALTERNATIVES

Data lake implementations must satisfy the requirements of diverse user groups, which leads to multiple and very 
diverse approaches to data and tools. A wide range of data integration and quality tools rely on SQL, and data lakes 
need these tools for data ingestion and data pipelines.    Even traditional data warehouse and reporting environments 
include various SQL-based tools for the same reasons.

This diversity of new data repositories (e.g. Apache Hadoop, Amazon S3, Microsoft Azure Object Storage, and Google 
Cloud Storage) and data processing methods have precipitated the creation of several SQL engines for data lakes.  
These data lakes are used to aggregate information from multiple sources and act as a central repository for all data. 
Businesses then use different data lake engines and frameworks on top of these repositories to create analytics and 
machine learning models that provide greater insight and business value from the data they contain.

Most data lake tools for self-service analytics, data exploration, preparation, and visualization assume a SQL interface. 
Without SQL, data lake implementations severely limit the number and types of users that can fully take advantage of 
them.  All of these new engines breathe life into much older BI, reporting, and dashboard technologies.  Let’s take a 
technical look at the architecture of three of the most popular SQL engines.
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Hive
Hive was created by the Qubole co-founders (Ashish Thusoo and Joydeep Sen Sarma) while 
they were leading the Facebook data team back in 2008, it was created with the intent of 
providing a SQL-based declarative interface with the ability to also support programmatic 
capabilities and to store centralized metadata about all data sets in an organization.   Hive is 
an Apache open-source project built on top of Hadoop for querying, summarizing, and 
analyzing large data sets using a SQL-like interface. The project is noted for bringing the 
familiarity of relational technology to data lakes with its Hive Query Language (HQL) as well 
as structures and operations comparable to those used with relational databases such as 
tables, JOINs, and partitions.

Apache Hive accepts Hive Query Language (similar to SQL) and converts it to Apache Tez 
jobs. Apache Tez is an application framework that can run complex pipelines of operators to 
process data. It replaces the MapReduce engine.

Hive’s architecture is optimized for batch processing of large ETL jobs and batch SQL 
queries on very large data sets. Hive features include:

Metastore: The Hive metastore stores the metadata for Hive tables and partitions in a 
relational database. The metastore provides client access to the information it contains 
through the metastore service API.
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Hive Client and HiveServer2: Users submit HQL statements to the Hive Client or 
HiveServer2 (HS2). These function as a controller and manage the query lifecycle. After a 
query completes, the results are returned to the user. HS2 is a long-running daemon that 
implements many features to improve the speed of planning and optimization of HQL 
queries. HS2 also supports sessions, which provide features such as temporary tables, 
which is useful for ETL jobs.

Checkpointing of Intermediate Results: Apache Hive and Apache Tez checkpoint 
intermediate results. Intermediate results are stored in HDFS (Hadoop File System). 
Checkpointing allows for fast recovery when tasks fail. Hive can restart tasks from the 
previous checkpoint.

Speculative Execution: This function helps to improve the speed of queries by redoing 
work that is lagging due to hardware or networking issues.

Fair Scheduler: Fair scheduling is a method of assigning resources to jobs so that all jobs 
get, on average, an equal share of resources over time. When there is a single job running, 
that job uses the entire cluster.  When other jobs are submitted, task slots that free up are 
assigned to the new jobs, so that each job gets roughly the same amount of CPU time. 
Unlike the default Hadoop Scheduler, which forms a queue of jobs, fair scheduling lets short 
jobs finish in a reasonable time while not starving long jobs. It is also an easy way to share a 
cluster between multiple users. Fair sharing can also work with job priorities. The priorities 
are used as weights to determine the fraction of total compute time that each job gets.

Hive Architecture
The diagram below shows the major components of Hive and its interactions with Hadoop:

MAP/REDUCE TASKS

MAP/REDUCE 

SERDE DESEREALIZER SERDE SERIALIZER

The diagram above shows how a typical query flows through Hive. The UI calls the Execution Engine through the Driver 
(step 1 in the diagram). The Driver creates a session handle for the query and sends the query to the Compiler to 
generate an execution plan (step 2).
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UI
The User Interface allows users to submit queries to Hive.

Driver
The Driver receives the queries. The Driver implements session handles and provides 
execute and fetch APIs modeled after the JDBC/ODBC protocols.

Compiler
The compiler parses queries, performs semantic analysis on different query blocks and 
query expressions. In turn, the compiler generates an execution plan with the help of the 
table and partition data from the metastore.

Metastore
The Metastore persists all of the structural information for all tables and partitions in Hive 
including column and column types, serializers and deserializers necessary to read and write 
data along with the corresponding HDFS files where the data is stored.

Execution Engine 
The Execution Engine carries out the execution plan created by the compiler. The plan is a 
DAG (Directed Acyclic Graph) of stages. The Execution Engine manages the dependencies 
between the different steps of the plan and executes these steps on the appropriate system 
components.

The Compiler gets the necessary metadata from the Metastore (steps 3 and 4). This 
metadata is used to typecheck the expressions in the query tree as well as to prune 
partitions based on query predicates. The plan generated by the Compiler (step 5) is a DAG 
of steps with each step being either a map or reduce job, a metadata operation or an 
operation on HDFS.  The execution engine submits these steps to the appropriate 
components (steps 6, 6.1, 6.2 and 6.3). In each task (mapper or reducer) the deserializer 
associated with the table or intermediate outputs is used to read the rows from HDFS files 
and these are passed through the associated operator tree. 

Once the output is generated, it is written to a temporary HDFS file though the serializer (this 
happens in the mapper in case the operation does not need a reduce). The temporary files 
are used to provide data to subsequent map/reduce stages of the plan. 

For DML operations the final temporary file is moved to the table's location. For queries, the 
contents of the temporary file are read by the execution engine directly from HDFS as part 
of the fetch call from the Driver (steps 7, 8 and 9).



Spark
Spark was originally developed at the University of California, Berkeley’s AMPLab in 2009 as a 
fast and general computational engine for Hadoop data. The Spark code was later donated 
to the Apache Software foundation which maintains it since that time.  Spark provides a 
simple and expressive programming model that supports a wide range of machine learning 
and data processing applications. Spark’s in-memory data model and fast processing makes 
it particularly suitable for applications such as:

• Machine learning and graph processing

• Stream processing

• Interactive queries against in-memory data

• Batch ETL processing
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Hive Use Cases
• Business intelligence, reporting, and dashboards due to compatibility with all major BI

tool vendors such as Tableau, Looker, and Pentaho.

• Large data set persistence.

The following diagram shows the components of Spark:

Spark SQL

Apache Spark Core

Spark
Streaming

MLib
(machine
learning)

GraphX
(graph)

Qubole provides an enhanced 

implementation of Apache Hive by 

offering agent technology that augments 

the original Hive architecture with a self-

managing and self-optimizing platform. 

Additionally, Qubole Hive seamlessly 

integrates with existing data sources and 

third-party tools while providing best-in-

class security.
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Apache Spark Core
The Spark Core is the underlying general execution engine for the Spark platform upon 
which all other functionality is built. It is responsible for I/O functionality, job scheduling and 
monitoring, task dispatching, networking with different storage systems, fault recovery, and 
memory management.

Spark SQL
Spark SQL is used to perform SQL queries on distributed data sets. It can be used for data 
exploration, data pipeline creation, and data transformation. It can read and join 
heterogeneous data repositories. Spark SQL represents structured data as Spark 
DataFrames (a DataFrame is a data set organized into named columns; it is conceptually 
equivalent to a table in a relational database or a data frame in R/Python, but with richer 
optimizations). These are internally represented as RDDs (resilient distributed data sets) with 
an associated schema. 

When computing a result, the same execution engine is used, independent of which API/
language is used to express the computation. This means that Spark SQL developers can 
combine SQL queries with code written in Python, Scala, Java, and R. Because it’s the same 
execution engine, developers can switch back and forth to select the optimal way to express 
a given transformation.

Spark Streaming
Spark Streaming allows developers to create streaming jobs the same way they create batch 
jobs. Spark Streaming can read data from HDFS, Flume, Kafka, Twitter, and ZeroMQ. Spark 
Structured Streaming is built to leverage the core Spark engine. It can partition large 
streaming data sets across multiple worker nodes to be processed in parallel. Spark 
Structured Streaming expresses SQL queries over streaming data, taking advantage of the 
Spark SQL component described above. Developers can also define their own custom data 
sources.

MLlib (Machine Learning Library)
MLlib is Spark's scalable machine learning library consisting of common learning algorithms 
and utilities, such as classification, regression, clustering, collaborative filtering, and 
dimensionality reduction. It also includes optimization primitives such as summary statistics.

GraphX
GraphX is Apache Spark's API for graphs and graph-parallel computation. GraphX unifies 
ETL, exploratory analysis, and iterative graph computation within a single system.
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Spark SQL Architecture
At a very high level, the flexible data access layer is at the bottom, which allows access to 
multiple data formats. The Data Source API is used to read structured and semi-structured 
data and converted into a DataFrame API. A DataFrame is equivalent to a relational database 
table.  Once the DataFrame is created, it can be accessed through a programming language 
(DSL, or domain-specific language) or via SQL or HQL.The following diagram illustrates the 
Spark SQL architecture:

Spark SQL Use Cases
• Real-time analytics such as stock market analysis, social media sentiment analysis,

and credit card fraud.

• Life sciences applications that demand large data sets such as genome sequencing
to predict predisposition to disease.

Qubole’s Spark implementation greatly 

improves the performance of Spark 

workloads with enhancements such as fast 

storage, distributed caching, advanced 

indexing, and metadata caching capabilities. 

Other enhancements include job isolation on 

multi-tenant clusters and SparkLens, an open 

source Spark profiler that provides insights 

into the Spark application.



Presto
Presto is an open source distributed SQL query engine developed by Facebook. Facebook 
started development efforts on Presto in 2012, and announced its release as open source 
for Apache Hadoop in 2013. In 2014, Netflix disclosed they used Presto on 10 petabytes of 
data stored on the Amazon Simple Storage Service (S3). Presto is used for running 
interactive analytic queries against data sources of all sizes ranging from gigabytes to 
petabytes.

Presto was designed and written completely for interactive analytics and approaches the 
speed of commercial data warehouses. Facebook uses Presto for interactive queries against 
several internal data stores including its 300-petabyte data warehouse. Over 1,000 
Facebook employees use Presto everyday to run more than 30,000 queries that in total scan 
over a petabyte each per day.

The execution model of Presto is fundamentally different from Hive or MapReduce. Hive 
translates queries into multiple stages of MapReduce tasks that execute one after the other. 
Each task reads inputs from disk storage and writes intermediate output back to disk. In 
contrast, the Presto engine does not use MapReduce. It employs a custom query and 
execution engine with operators designed to support SQL semantics. In addition to 
improved scheduling, processing is in memory and pipelined across the network between 
stages. This avoids unnecessary I/O and associated latency overhead. The pipelined 
execution model runs multiple stages at once and streams data from one stage to the next 
as it becomes available. This significantly reduces end-to-end latency for many types of 
queries.

Presto Architecture
Presto runs on one or more machines that form a cluster. Presto instances include one 
coordinator and a number of workers. The Presto coordinator is the machine to which 
clients submit their queries. The coordinator is responsible for parsing, planning, and 
scheduling queries among the workers. Adding workers increases parallelism and yields 
faster query processing. The following figure illustrates the key components of Presto.
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Clients
Clients submit queries to Presto. Clients use JDBC/ODBC/REST protocols to talk to the Presto 
coordinator.

Coordinator
The Presto coordinator manages worker nodes, parses the queries, generates execution 
plans, and manages the execution of queries. It also manages the delivery of the data 
between tasks during query execution. The coordinator translates queries into a logical plan. 
The logical plan has a series of stages and each stage is then executed in a distributed 
manner using several tasks across workers. This is similar to other distributed query 
execution engines like Hive and Spark.

Workers
The Presto workers execute tasks and process data. This is where the actual data processing 
happens.

Communication
Presto workers announce themselves to the coordinator through the discovery server. All of 
the communication in Presto between the coordinator, the workers, and the client occurs 
through REST APIs.
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Coordinator
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Connectors
Presto has a federated query model where each data source is a connector. Presto 
connectors are similar to database drivers. Some of the available connectors on the Presto 
project are Kafka, Cassandra, Hive, Accumulo, MongoDB, MySQL, PostgreSQL, Redis, etc.

Catalog
Catalogs are associated with a specific connector. The Presto Catalog Manager decides how 
to query a particular data source. When writing a query in Presto, you can use the fully 
qualified name that contains connector.schemaname.tablename. For instance, if you have a 
Hive table called customer in a database called sales, you can refer it as hive.sales.customer. 

Presto Use Cases
• Interactive (ad hoc) queries

• Reporting

• Supporting analytical tools such as dashboards

• Self-service BI

Qubole has optimized Presto for the 

cloud. Qubole’s enhancements allow 

for dynamic cluster sizing based on 

workload and termination of idle 

clusters — ensuring high reliability 

while reducing compute costs. Qubole’s 

Presto clusters support multi-tenancy 

and provide logs and metrics to track 

performance of queries.
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COMPARISON AND SUITABILITY OF EACH ENGINE

You should evaluate several factors when considering the optimal cloud SQL engine and cluster pairing. The tables 
below highlight the reasons to choose one engine over another. They also identify each item as either a fact or a 
suggestion. Facts always hold true, but suggestions should be weighed against your particular use case.

Architecture Breakdown

Usage Breakdown

HIVE using
MapReduce

Fact

Suggestion  

Fact

Fact

Suggestion

Suggestion

Data volume above 
100 TB

Dynamic Partitioning 
support

Appropriate for 
Data Engineers

Appropriate for Data 
Scientists

Batch Workload / ETL 
use case appropriate

Notebook support 
available

HIVE using
Tez

Presto Spark

Suggestion  

Suggestion  

Appropriate for 
Data Analysts

Ad-Hoc use case 
appropriate

HIVE using
MapReduce

Fact

Fact

Fact

Write to disk 
between consecutive 
jobs

Streams data 
in memory 
between tasks

ANSI SQL
compliant

HIVE using
Tez Presto Spark
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SQL Breakdown

File Format Breakdown

Fact

Suggestion

(default 
behavior)

Suggestion

Suggestion

Suggestion

Suggestion

In Memory join option

Prefers the Parquet 
format

Appropriate for 
simple joins

Prefers the ORC 
format

Appropriate for 
complex joins

4 or more tables in 
join

HIVE using
MapReduce

HIVE using
Tez

Presto Spark

HIVE using
MapReduce

HIVE using
Tez

Presto Spark



White Paper

WHICH ENGINE SHOULD YOU USE (CONCLUSION /RECOMMENDATIONS)

SQL engines for data lakes are part of a quickly evolving field with a lot of activity and fast innovation. Engines can be 
differentiated on several characteristics including: type of workload, and processing speed. The decision tree below 
follows a functional and use case–based approach to arrive at a SQL engine recommendation. 

Machine
Learning

Workload?

Using
SQL?

ETL or
BI/ Interactive

Workload?

Steaming
or Batch?

NO

NO

Streaming/
Batch

YES

YES

ETL

Batch

BI/ Interactive

ML, Unified 
Batch & Stream 

SQL Engine

Fault tolerant batch
processing for

complex workloads

ANSI SQL compatible
engine for interactive

analytics against multiple
data sources



17

White Paper

When selecting an engine, it is critical to keep in mind that every SQL engine was built to deal with a particular 
problem that may include one or more types of workload (batch, streaming, and interactive). Most importantly, you 
should keep in mind that there is no one-size-fits-all SQL engine that can fulfill all possible use cases. For this reason, 
it is important to select a platform that offers multiple SQL engines.

Qubole is an open, simple, and secure data lake platform for machine learning, streaming analytics, data exploration, 
and ad-hoc analytics. No other platform radically simplifies data management, data engineering and run-time services 
like Qubole. Qubole provides multiple SQL engines and enables reliable, secure data access and collaboration among 
users while reducing time to value, improving productivity, and lowering cloud data lake costs from day one. The 
Qubole Open Data Lake Platform: 

• Provides a unified environment for creation and orchestration of multiple data pipelines to dynamically build 
trusted datasets for ad-hoc analytics, streaming analytics, and machine learning. 

• Optimizes and rebalances underlying multi-cloud infrastructure for the best financial outcome while supporting 
the unmatched levels of concurrent users, and workloads at any point in time.

• Enables collaboration through workbench between data scientists, data engineers, and data analysts with 
shareable notebooks, queries, and dashboards. 

• Improves the security, governance, reliability, and accessibility of data residing in data lakes. 
• Provides APIs, and connectors to 3rd party tools such as Tableau, Looker for analytics, RStudio, H2O.ai for 

machine learning use cases.
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CUSTOMER SUCCESS STORIES

In a not so distant past the following organizations faced the challenge of democratizing access to their 
data lake without compromising security while staying within budget.  They were able to achieve this by 
taking advantage of Qubole’s open data lake platform which allowed them to enable self-service while 
successfully addressing multiple use cases.

Ibotta
Ibotta is a mobile technology company transforming the traditional rebates industry by providing in-
app cashback rewards on receipts and online purchases for groceries, electronics, clothing, gifts, 
supplies, restaurant dining, and more for anyone with a smartphone. Today, Ibotta is one of the most 
used shopping apps in the United States, driving over $5 billion in purchases per year to companies like 
Target, Costco and Walmart. Ibotta has over 23 million total downloads and has paid out more than 
$250 million to users since its founding in 2012.

Business Need
Ibotta’s ability to track consumer engagement at the point of sale allows them to provide a 360 degree 
view of analytics on purchase attribution back to their partners. Their app provides Business Analytics 
that allows retailers and brands to make more informed buying decisions in-store and online. This 
information helps retailers and brands engage with their customers at a very personal level, as well as 
optimize future investments in new products and marketing campaigns.

The insights they provided were so valuable, their partners kept requesting more detailed information 
and features to better engage with existing and new customers. As a result, the company decided to 
focus on expanding advertising and eCommerce segments in the product. This, in turn, has created 
new revenue streams that they can reinvest back into the business and increase our consumer’s 
savings. It was at this point Ibotta began to see a huge growth in the data. They needed a solution to 
help scale the company’s goals.

While the growth in data has helped improve insight, it also had a significant impact on the data 
infrastructure and was a key driver for them to change technology operations.

Since March of 2017, Ibotta’s data has grown by over 70x, to nearly 1PB, with over 20 TB of new data 
coming in daily. The biggest driver of data growth has come from generating first-party data features in 
order to improve their users’ personalized experiences.
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Solution
To address the problems faced by the data teams, they built a cost-efficient self-service data platform. 
Ibotta needed a way for every user -- particularly Data Science and Engineering -- to have self-service 
access to the data; and to be able to use the right tools for their use cases with big data engines like 
Apache Spark, Hive, and Presto. The data team needed to be able to complete the tasks of preparing 
data for those Data Science and Engineering Teams at the same time. Qubole simultaneously provided 
an answer to the demands of both teams, those perfecting operations as well as analyzing the data.

Impact
Ibotta’s Data Science and Engineering teams were immediately empowered once Qubole was in place. 
They achieved the goal of self-service access to the data and efficient scale of compute resources in 
AWS EC2 for big data workloads.  The following diagram depicts how the Qubole Platform enables their 
Data Science and Analytics teams to focus less on mundane tasks and more on what matters, 
becoming the foundation for their data-driven culture.

The following diagram depicts how the Qubole Platform enables their Data Science and Analytics 
teams to focus less on mundane tasks and more on what matters, becoming the foundation for their 
data-driven culture.

Ibotta is well on its way to building the world’s starting point for rewarded shopping by partnering with 
Qubole and building out their cloud data lake. More than ever, they are focusing on delivering next 
generation ecommerce features and products that help drive both a better user experience and partner 
monetization. Qubole allows them to spend time developing and productionalizing scalable data products, 
more importantly concentrating on bringing value back to their users and company.
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TiVo
TiVo Corporation (NASDAQ: TIVO) is a global leader in entertainment technology and audience insights. 
From the interactive program guide to the DVR, TiVo delivers innovative products and licensable 
technologies that revolutionize how people find content across a changing media landscape. TiVo 
enables the world’s leading media and entertainment providers to deliver the ultimate entertainment 
experience.

Business Need
TiVo’s entertainment platform consolidates terabytes of data every month: raw viewership data from 
cable boxes in millions of homes, purchasing data from first and third parties, and location-based 
consumer data. TiVo’s network and advertising partners need reports based on this data to better 
understand the viewing and purchasing behaviors of various customer demographics.

Because TiVo’s partners often have drastically different reporting needs, all of this data needs to be 
transformed, segmented, and packaged in several different ways to satisfy their requirements. TiVo’s 
data engineering team needed a way to do this efficiently, affordably, and at scale.

Solution
To more readily make its data available for analytics operations, TiVo deployed a data lake on Amazon 
S3. The data lake allows the company to store any data type in a single convenient repository. Data can 
be collected from multiple sources and moved into the data lake in its original format. This allows TiVo 
to scale to data of any size, while saving time by eliminating the need to define data structures, schema, 
and transformations.

TiVo’s data engineering team chose Presto as its query engine based on its flexibility and efficiency. The 
team then decided to use Qubole, which allows it to easily scale and manage its Presto clusters and 
more easily audit queries and debug commands. The Activation Platform provided out-of-the box 
functionality that Tivo would have needed to create from scratch if it had chosen to deploy Presto on 
top of AWS EC2 without Qubole. TiVo’s data engineers found Qubole simple to deploy: after configuring 
permissions for AWS and the Qubole website, they were ready to run queries.

Qubole templates automate every element of TiVo’s queries, including activating Presto clusters and 
scaling the clusters based on usage. This eliminates the need to manually write scripts to tell Presto 
how to behave. The query results are then saved in Amazon S3 buckets for later auditing. Through its 
service administration portal, TiVo can track its queries and view and download intermediate queries 
and results.

Qubole’s rich feature set includes the ability to label individual clusters according to their workload. 
TiVo labels clusters (e.g. “ETL,” “Reporting,” and “Interactive”) to help its team of developers stay 
organized. Qubole’s notebook feature provides a convenient way to save, share, and re-run a set of 
queries on a data source – for example, to track changes in the underlying data over time, or to provide 
different views using different parameters.
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Impact
Qubole streamlines the process of generating reports for TiVo’s partners, whose needs are constantly 
changing week-to-week in terms of scope, data type, and time (weekly, monthly, yearly). The financial 
and human resources required to run data science operations depend heavily on the complexity of the 
reports being run. Today, TiVo can do more with fewer resources by automating its reporting with 
Qubole.

Qubole provides a simple, intuitive way for TiVo’s partners to set up and schedule reports tailored for 
their specific requirements. This self-service feature provides TiVo’s network and advertising partners 
with the business intelligence tools they need to interpret data from highly targeted demographics at a 
cadence that works best for them. Having access to any kind of viewership, and purchasing only the 
reporting they need, allows networks and advertisers to more easily customize and scale new media 
products to thrive in a highly competitive space.

About Qubole 
Qubole is revolutionizing the way companies activate their data — the process of putting data into active use across their organizations. With Qubole’s open data lake platform, 
companies exponentially activate petabytes of data faster, for everyone and any use case, while continuously lowering costs. Qubole overcomes the challenges of expanding users, use 
cases, and variety and volume of data while constrained by limited budgets and a global shortage of big data skills. Qubole offers the only platform that delivers freedom of choice, 
eliminating legacy lock in — use any engine, any tool, and any cloud to match your company’s needs. Qubole investors include CRV, Harmony Partners, IVP, Lightspeed Venture Partners, 
Norwest Venture Partners, and Singtel Innov8. For more information, visit www.qubole.com.

469 El Camino Real, Suite 201
Santa Clara, CA 95050
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